Advertisement

Demulsification-induced Fast Solidification: a Novel Strategy for Preparation of Polymer Encapsulations

  • Dan Wang
  • Xingshi Ge
  • Jianfu ZhangEmail author
  • Zhongmin SuEmail author
Article
  • 3 Downloads

Abstract

Encapsulations are being increasingly investigated in both academic research and industrial manufacturing and applied in numerous fields, such as phase change materials and smart materials. In this paper, a novel strategy of demulsification-induced fast solidification(DIFS) was proposed for the rapid fabrication(within 1 s) of polymer encapsulations via immersion of demulsifier particles in emulsion. The DIFS method allowed the fabrication of three-dimensional(3D) hollow polymer encapsulations with precisely controlled size and thickness over a wide range from micron to millimeter within just 1 s. Magnetic nanoparticles and luminescent materials were further introduced into 3D hollow polymer encapsulations via facile blending method. Moreover, encapsulated paraffin phase change materials with good thermal stability were also obtained using the DIFS method. Therefore, this work provides new insights into the design and preparation of functionalized encapsulation materials.

Keywords

Polymer Demulsification Encapsulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Supplementary material, approximately 8.81 MB.

References

  1. [1]
    Wu G., An J. L., Tang X. Z., Xiang Y., Yang J. L., Adv. Funct. Mater., 2014, 24, 6751CrossRefGoogle Scholar
  2. [2]
    Zhang Z. H., Xue Y. D., Zhang P. C., Müller A. H. E., Zhang W. A., Macromolecules, 2016, 49, 8440CrossRefGoogle Scholar
  3. [3]
    Motornov M., Roiter Y., Tokarev I., Minko S., Prog. Polym. Sci., 2010, 35, 174CrossRefGoogle Scholar
  4. [4]
    Huang P. S., Wang X. L., Liang X. Y., Yang J., Zhang C. N., Kong D. L., Wang W. W., Acta Biomater., 2019, 85, 1CrossRefGoogle Scholar
  5. [5]
    Lashgari S., Mahdavian A. R., Arabi H., Ambrogi V., Marturano V., Eur. Polym. J., 2018, 101, 18CrossRefGoogle Scholar
  6. [6]
    Lu H. J., Zhang M., Yang Y. Y., Huang Q., Fukuda T., Wang Z. K., Shen Y. J., Nat. Commun., 2018, 9, 3944CrossRefGoogle Scholar
  7. [7]
    Benita S., Microencapsulation: Methods and Industrial Applications, Marcel Dekker Inc., New York, 1996 Google Scholar
  8. [8]
    Kim M., Yeo S. J., Highley C. B., Burdick J. A., Yoo P. J., Doh J., Lee D., ACS Nano, 2015, 9, 8269CrossRefGoogle Scholar
  9. [9]
    Bartel M., Wysocka B., Krug P., Kępińska D., Kijewska K., Blanchard G. J., Kaczyńska K., Lubelska K., Wiktorska K., Głowala P., Wilczek M., Pisarek M., Szczytko J., Twardowski A., Mazur M., Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 2018, 195, 148CrossRefGoogle Scholar
  10. [10]
    Decher G., Science, 1997, 277, 1232CrossRefGoogle Scholar
  11. [11]
    Zhang X., Chen H., Zhang H. Y., Chem. Commun., 2007, 14, 1395CrossRefGoogle Scholar
  12. [12]
    Chu M., Zhang J. F., Qu L. H., Li M. Y., Zhu D. T., Li W. F., Yao Z. H., Chem. J. Chinese Universities, 2018, 39(12), 2781Google Scholar
  13. [13]
    Mandal J., Fu Y., Overvig A., Jia M., Sun K., Shi N., Zhou H., Xiao X., Yu N., Yang Y., Science, 2018, 362, 315CrossRefGoogle Scholar
  14. [14]
    Liu G. M., Li Y. L., Yang S. T., Zhao Y. A., Lu T. C., Jia W. Y., Ji X., Luo Y. G., Chem. Res. Chinese Universities, 2019, 35(3), 514CrossRefGoogle Scholar
  15. [15]
    Bertling J., Blömer J., Kümmel R., Chem. Eng. Technol., 2004, 27, 829CrossRefGoogle Scholar
  16. [16]
    Erlbeck L., Schreiner P., Fasel F., Methner F. J., Rädle M., Constr. Build. Mater., 2018, 180, 512CrossRefGoogle Scholar
  17. [17]
    McHale G., Newton M. I., Soft Matter, 2011, 7, 5473CrossRefGoogle Scholar
  18. [18]
    Moreno M. A., Orqueda M. E., Gómez-Mascaraque L. G., Isla M. I., López-Rubio A., Food Hydrocolloids, 2019, 95, 496CrossRefGoogle Scholar
  19. [19]
    Arconada N., Arribas L., Lucio B., González-Aguilar J., Romero M., Sol. Energy, 2018, 167, 1CrossRefGoogle Scholar
  20. [20]
    Pendyala S., Macroencapsulation of Phase Change Materials for Thermal Energy Storage, University of South Florida, Tampa Bay, 2012 Google Scholar
  21. [21]
    Bian F. L., Wang G. B., Liu X. S., Zheng Y., Sun Y. X., Shen J. C., Zhou E. L., Zhao X. G., Acta Scientiarum Naturalium Universitatis Jilinensis, 1994, 3, 110Google Scholar
  22. [22]
    Wang Q., Fu S. K., Yu T. Y., Prog. Polym. Sci., 1994, 19, 703CrossRefGoogle Scholar
  23. [23]
    Warson H., Finch C. A., Applications of Synthetic Resin Latices, John Wiley & Sons, Inc., Chichester, UK, 2001 Google Scholar
  24. [24]
    Chern C. S., Prog. Polym. Sci., 2006, 31, 443CrossRefGoogle Scholar
  25. [25]
    Song X. Y., Shi P., Duan M., Fang S. W., Ma Y. Z., RSC Adv., 2015, 5, 62971CrossRefGoogle Scholar
  26. [26]
    Ren B. P., Kang Y., Langmuir, 2018, 34, 8923CrossRefGoogle Scholar
  27. [27]
    Chen F., Yang Z., Petrochem. Ind. Appl., 2009, 28, 1Google Scholar
  28. [28]
    Wang D., Ge X. S., Nie H. R., Yao Z. H., Zhang J. F., Chem. Commun., 2019, 55, 9192CrossRefGoogle Scholar
  29. [29]
    Wang D., Kong R. X., Ge X. S., Yao Z. H., Zhou Y., Zhang J. F., Macromol. Mater. Eng., 2019, 1900250Google Scholar
  30. [30]
    Zhang G., Ye L., J. Polym. Environ., 2017, 25, 229CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChangchun University of Science and TechnologyChangchunP. R. China
  2. 2.School of Chemistry and Environmental EngineeringChangchun University of Science and TechnologyChangchunP. R. China
  3. 3.Jilin Provincial Science and Technology Innovation Center of Optical Materials and ChemistryChangchunP. R. China

Personalised recommendations