Enantioseparation by HPLC Using an Inorganic Chiral Mesoporous Silica with Highly-ordered Structure

  • Bo Peng
  • Shiguo Fu
  • Yanxia Li
  • Junhui Zhang
  • Shengming Xie
  • Li Li
  • Yun Lyu
  • Aihong Duan
  • Xuexian Chen
  • Liming YuanEmail author


Highly-ordered inorganic chiral mesoporous silica(HOCMS) has attracted substantial interest in recent decades. High performance liquid chromatography(HPLC) is the most important approach for the separation of enantiomers and herein reported an HPLC chiral stationary phase composed of HOCMS. The column was fabricated by conventional high pressure slurry packing. Eighteen racemates, including alcohols, ketones, amines, aldehydes and organic acids, were resolved on the column. Good chiral separations of hydrobenzoin, metoprolol, propranolol hydrochloride, 4-methyl-2-pentanol, omeprazole, 2,2′-furoin and ketoprofen were obtained. The relative standard devi-ations for five replicate separations of racemates were 0.1%–0.16% for retention time and 1.73%–2.64% for peak areas. The results suggest that HOCMS is a promising candidate for preparation of chiral stationary phases for HPLC.


Highly-ordered inorganic chiral mesoporous silica Chiral stationary phase High performance liquid chromatography Enantioseparation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S., Nature, 1992, 359(6397), 710CrossRefGoogle Scholar
  2. [2]
    Zhu G., Zhong H., Yang Q., Li C., Microporous Mesoporous Mater., 2008, 116(1–3), 36CrossRefGoogle Scholar
  3. [3]
    Polarz S., Kuschel A., Adv. Mater., 2006, 18(9), 1206CrossRefGoogle Scholar
  4. [4]
    Sierra I., Pérez-Quintanilla D., Morante S., Gañán J., Chromatogr. A, 2014, 1363(1), 27CrossRefGoogle Scholar
  5. [5]
    Notz W., Tanaka F., Barbas C. F., Acc. Chem. Res., 2004, 37(44), 58Google Scholar
  6. [6]
    Li X., Barua S., Rege K., Vogt B. D., Langmuir, 2008, 24(20), 11935PubMedCrossRefGoogle Scholar
  7. [7]
    Sánchez-Muñoz S., Pérez-Quintanilla D., Gómez-Ruiz S., Mater. Res. Bull., 2013, 48(2), 250CrossRefGoogle Scholar
  8. [8]
    Kärger J., Valiullin R., Chem. Soc. Rev., 2013, 42(9), 4172PubMedCrossRefGoogle Scholar
  9. [9]
    Fang X. L., Zhao X. J., Fang W. J., Chen C., Zheng N. F., Nanoscale, 2013, 5(6), 2205PubMedCrossRefGoogle Scholar
  10. [10]
    Lebeau B., Galarneau A., Linden M., Chem. Soc. Rev., 2013, 42(9), 3661PubMedCrossRefGoogle Scholar
  11. [11]
    Che S., Sakamoto Y., Terasaki O., Tatsumi T, Microporous Meso-porous Mater., 2005, 85(3), 207CrossRefGoogle Scholar
  12. [12]
    Xie J., Duan Y., Che S., Adv. Funct. Mater., 2012, 22(18), 3750CrossRefGoogle Scholar
  13. [13]
    Zhang J. H., Zhang M., Xie S. M., He P. G., Yuan L. M., Adv. Funct. Mater., 2015, 7(8), 3448Google Scholar
  14. [14]
    Qiu H., Che S., Chem. Soc. Rev., 2011, 40(3), 1259PubMedCrossRefGoogle Scholar
  15. [15]
    Shi H. Y., Zhang H. Z., Long Y. D., Huang T. B., Chem. Res. Chinese Universities, 2009, 25(6), 822Google Scholar
  16. [16]
    Gu J. Y., He W. P., Shi X. F., Ji L. N., Chem. Res. Chinese Universities, 2008, 24(1), 106CrossRefGoogle Scholar
  17. [17]
    Li H., Xu D. Z., Wu L. L., Wang Y. M., Chem. Res. Chinese Universities, 2012, 28(6), 1003Google Scholar
  18. [18]
    Shiv Alwera., Ravi Bhushan, J. Liq. Chromatogr. Relat. Technol., 2017, 40(1), 707Google Scholar
  19. [19]
    Li L., Xie S. M., Zhang J. H., Chen L., Zhu P. J., Yuan L. M., Chem. Res. Chinese Universities, 2017, 33(1), 24CrossRefGoogle Scholar
  20. [20]
    Wu P., Wu Y. P., Zhang J. H., Lu Z. Y., Zhang M., Chen X. X., Yuan L. M., Chem. Commun., 2017, 35(7), 1037Google Scholar
  21. [21]
    Thoelen C., Walle K. V. D., Vankelecom I. F. J., Jacobs P. A., Chem. Commun., 1999, 18(1), 1841CrossRefGoogle Scholar
  22. [22]
    Zhu G. R., Jiang D. M., Yang Q. H., Yang J., Li C., J. Chromatogr. A, 2007, 1149(2), 219PubMedCrossRefGoogle Scholar
  23. [23]
    Ai F., Li L., Ng S. C., Tan T. T. Y., J. Chromatogr. A, 2010, 1217(48), 7502PubMedCrossRefGoogle Scholar
  24. [24]
    Li Y. X., Fu S. G., Zhang J. H., Xie S. M., Li L., He Y. Y., Zi M., Yuan L. M., J. Chromatogr. A, 2018, 1557(1), 99PubMedCrossRefGoogle Scholar
  25. [25]
    Che S., Liu Z., Ohsuna T., Sakamoto K., Nature, 2004, 429(6989), 281PubMedCrossRefGoogle Scholar
  26. [26]
    Tracey A. S., Zhang X., J. Phys. Chem., 1992, 96(9), 3889CrossRefGoogle Scholar
  27. [27]
    Acharya D. P., Lopez-Quintela M. A., Kunieda H., Oshimura E., Sakamoto K., J. Oleo Sci., 2003, 52(8), 407CrossRefGoogle Scholar
  28. [28]
    Zhang M., Pu Z. J., Chen X. L., Gong X. L., Zhu A. X., Yuan L. M., Chem. Commun., 2013, 49(45), 5201CrossRefGoogle Scholar
  29. [29]
    Li L., Cheng B., Zhou R., Cao Z., Zeng C., Li L., Talant, 2017, 174(1), 179CrossRefGoogle Scholar
  30. [30]
    Zhang J. H., Zhang M., He P. G., Yuan L. M., Anal. Methods, 2015, 7(9), 3772CrossRefGoogle Scholar
  31. [31]
    Shi J. Q., Duan A. H., Yuan L. M., Chin. J. Anal. Lab., 2017, 36(6), 643Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Bo Peng
    • 1
  • Shiguo Fu
    • 1
  • Yanxia Li
    • 1
  • Junhui Zhang
    • 1
  • Shengming Xie
    • 1
  • Li Li
    • 1
  • Yun Lyu
    • 1
  • Aihong Duan
    • 1
  • Xuexian Chen
    • 1
  • Liming Yuan
    • 1
    Email author
  1. 1.Department of ChemistryYunnan Normal UniversityKunmingP. R. China

Personalised recommendations