Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 6, pp 1058–1061 | Cite as

Opening of Band Gap of Graphene with High Electronic Mobility by Codoping BN Pairs

  • Xiangyang Ren
  • Sha Xia
  • Zhiguo Zhang
  • Xing Meng
  • Hongmei Yu
  • Qi Wu
  • Wenyi Zhang
  • Aiwu LiEmail author
  • Han YangEmail author
Article
  • 18 Downloads

Abstract

Two-dimensional(2D) materials with a high density and low power consumption have become the most popular candidates for next-generation semiconductor electronic devices. As a prototype 2D material, graphene has attracted much attention owing to its stability and ultrahigh mobility. However, zero band gap of graphene leads to very low on-off ratios and thus limits its applications in electronic devices, such as transistors. Although some new 2D materials and doped graphene have nonzero band gaps, the electronic mobility is sacrificed. In this study, to open the band gap of graphene with high electronic mobility, the structure and property of BN-doped graphene were evaluated using first-principles calculations. The formation energies indicate that the six-membered BN rings doped graphene has the most favorable configuration. The band structures show that the band gaps can be opened by such type of doping. Also, the Dirac-cone-like band dispersion of graphene is mostly inhibited, ensuring high electronic mobility. Therefore, codoping BN into graphene might provide 2D materials with nonzero band gaps and high electronic mobility.

Keywords

First-principle calculation Doping Optoelectronic property Mobility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306(5696), 666PubMedCrossRefGoogle Scholar
  2. [2]
    Xu M., Liang T., Shi M., Chen H., Chem. Rev, 2013, 113(5), 3766PubMedCrossRefGoogle Scholar
  3. [3]
    Autore M., Li P., Dolado I., Alfaro-Mozaz F. J., Esteban R., Atxabal A., Casanova F., Hueso L. E., Alonso-González P., Aizpurua J., Nikitin A. Y., Vélez S., Hillenbrand R., Light: Sci. Appl., 2018, 7, 17172CrossRefGoogle Scholar
  4. [4]
    Abate Y., Gamage S., Li Z., Babicheva V., Javani M. H., Wang H., Cronin S. B., Stockman M. I., Light: Sci. Appl., 2016, 5, e16162CrossRefGoogle Scholar
  5. [5]
    Gan X. T., Zhao C. Y., Hu S. Q., Wang T., Song Y., Li J., Zhao Q. H., Jie W. Q., Zhao J. L., Light: Sci. Appl., 2018, 7(1), 17126CrossRefGoogle Scholar
  6. [6]
    Wang D., Han D., Li X. B., Chen N. K., West D., Meunier V., Zhang S. B., Sun H. B., Phys. Rev. B, 2017, 96(15), 155424CrossRefGoogle Scholar
  7. [7]
    Yang J., Wang Z., Wang F., Xu R. J., Tao J., Zhang S., Qin Q. H., Luther-Davies B., Jagadish C., Yu Z. F., Lu Y. R., Light: Sci. Appl., 2016, 5, e16046CrossRefGoogle Scholar
  8. [8]
    Dumcenco D. O., Kobayashi H., Liu Z., Huang Y. S., Suenaga K., Nat. Commun., 2013, 4, 1351PubMedPubMedCentralCrossRefGoogle Scholar
  9. [9]
    Chen W., Zhang S. P., Kang M., Liu W. K., Ou Z. W., Li Y., Zhang Y. X., Guan Z. Q., Xu H. X., Light: Sci. Appl., 2018, 7(1), 56CrossRefGoogle Scholar
  10. [10]
    Kang J. H., Cao W., Xie X. J., Sarkar D., Liu W., Banerjee K., SPIE, 2014, 908305Google Scholar
  11. [11]
    Zhu L. X., Liu F. Y., Lin H. T., Hu J. J., Yu Z. F., Wang X. R., Fan S. H., Light: Sci. Appl., 2016, 5, e16052CrossRefGoogle Scholar
  12. [12]
    Wang D., Li X. B., Han D., Tian W. Q., Sun H. B., Nano Today, 2017, 16, 30CrossRefGoogle Scholar
  13. [13]
    Wang X. P., Li X. B., Chen N. K., Zhao J. H., Chen Q. D., Sun H. B., Phys. Chem. Chem. Phys., 2018, 20(10), 6945PubMedCrossRefGoogle Scholar
  14. [14]
    Wang D., Li X. B., Sun H. B., Nanoscale, 2017, 9(32), 11619PubMedCrossRefGoogle Scholar
  15. [15]
    Zheng H., Li X. B., Chen N. A. K., Xie S. Y., Tian W. Q., Chen Y. P., Xia H., Zhang S. B., Sun H. B., Phys. Rev. B, 2015, 92(11), 115307CrossRefGoogle Scholar
  16. [16]
    Chen J. H., Tan J., Wu G. X., Zhang X. J., Xu F., Lu Y. Q., Light: Sci. Appl., 2019, 8(1), 8CrossRefGoogle Scholar
  17. [17]
    Kang P., Kim K. H., Park H. G., Nam S., Light: Sci. Appl., 2018, 7(1), 17CrossRefGoogle Scholar
  18. [18]
    Zhu Y. B., Li Z. Y., Hao Z., Dimarco C., Maturavongsadit P., Hao Y. F., Lu M., Stein A., Wang Q., Hone J., Yu N. F., Lin Q., Light: Sci. Appl., 2018, 7(1), 67CrossRefGoogle Scholar
  19. [19]
    Lee W. H., Park J., Sim S. H., Jo S. B., Kim K. S., Hong B. H., Cho K., Adv. Mater., 2011, 23(15), 1752PubMedCrossRefGoogle Scholar
  20. [20]
    Bae S., Kim H., Lee Y., Xu X. F., Park J. S., Zheng Y., Balakrishnan J., Lei T., Kim H. R., Song Y. I., Kim Y. J., Kim K. S., Ozyilmaz B., Ahn J. H., Hong B. H., Iijima S., Nat. Nanotechnol, 2010, 5(8), 574PubMedCrossRefPubMedCentralGoogle Scholar
  21. [21]
    Rodrigo D., Tittl A., Limaj O., Abajo F. J. G. D., Pruneri V., Altug H., Light: Sci. Appl., 2017, 6, e16277CrossRefGoogle Scholar
  22. [22]
    Zhai F., Feng Y., Zhou K., Wang L., Zheng Z., Feng W., J. Mater. Chem. C, 2019, 7(8), 2146CrossRefGoogle Scholar
  23. [23]
    Li Z., Wang L., Li Y., Feng Y., Feng W., Compos. Sci. Technol, 2019, 179, 10CrossRefGoogle Scholar
  24. [24]
    Dong L., Feng Y., Wang L., Feng W., Chem. Soc. Rev, 2018, 47(19), 7339PubMedCrossRefPubMedCentralGoogle Scholar
  25. [25]
    Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K., Rev. Mod. Phys., 2009, 81(1), 109CrossRefGoogle Scholar
  26. [26]
    Zhu Y. W., Murali S., Cai W. W., Li X. S., Suk J. W., Potts J. R., Ruoff R. S., Adv. Mater., 2010, 22(35), 3906PubMedCrossRefPubMedCentralGoogle Scholar
  27. [27]
    Morales-Narvaez E., Merkoci A., Adv. Mater., 2019, 31(6), 1805043Google Scholar
  28. [28]
    Xie S. Y., Li X. B., Sun Y. Y., Zhang Y. L., Han D., Tian W. Q., Wang W. Q., Zheng Y. S., Zhang S. B., Sun H. B., Carbon, 2013, 52, 122CrossRefGoogle Scholar
  29. [29]
    Gao X. F., Wei Z. Q., Meunier V., Sun Y. Y., Zhang S. B. B., Chem. Phys. Lett., 2013, 555, 1CrossRefGoogle Scholar
  30. [30]
    Wang Y., Shao Y. Y., Matson D. W., Li J. H., Lin Y. H., ACS Nano, 2010, 4(4), 1790PubMedCrossRefGoogle Scholar
  31. [31]
    Pan L., Que Y., Chen H., Wang D., Li J., Shen C., Xiao W., Du S., Gao H., Pantelides S. T., Nano Lett., 2015, 15(10), 6464PubMedCrossRefGoogle Scholar
  32. [32]
    Kim G., Jang A. R., Jeong H. Y., Lee Z., Kang D. J., Shin H. S., Nano Lett., 2013, 13(4), 1834PubMedCrossRefGoogle Scholar
  33. [33]
    Wang L. F., Wu B., Chen J. S., Liu H. T., Hu P. A., Liu Y. Q., Adv. Mater., 2014, 26(10), 1559PubMedCrossRefGoogle Scholar
  34. [34]
    Ci L., Song L., Jin C., Jariwala D., Wu D., Li Y., Srivastava A., Wang Z. F., Storr K., Balicas L., Nat. Mater., 2010, 9, 430PubMedCrossRefGoogle Scholar
  35. [35]
    Wang H., Zhao C., Liu L., Xu Z., Wei J., Wang W., Bai X., Wang E., Nano Research, 2016, 9(5), 1221CrossRefGoogle Scholar
  36. [36]
    Uddin M. R., Majety S., Li J., Lin J. Y., Jiang H. X., J. Appl. Phys., 2014, 115(9), 093509CrossRefGoogle Scholar
  37. [37]
    Zhang M., Gao G., Kutana A., Wang Y., Zou X., Tse J. S., Yakobson B. I., Li H., Liu H., Ma Y., Nanoscale, 2015, 7(28), 12023PubMedCrossRefGoogle Scholar
  38. [38]
    Guilhon I., Marques M., Teles L. K., Bechstedt F., Phys. Rev. B, 2017, 95(3), 035407CrossRefGoogle Scholar
  39. [39]
    Ren X. Y., Xia S., Li X. B., Chen N. K., Wang X. P., Wang D., Chen Z. G., Zhang S., Sun H. B., Phys. Chem. Chem. Phys., 2018, 20(35), 23106PubMedCrossRefGoogle Scholar
  40. [40]
    Hohenberg P., Kohn W., Phys. Rev., 1964, 136(3B), B864CrossRefGoogle Scholar
  41. [41]
    Kohn W., Sham L. J., Phys. Rev., 1965, 140(4A), A1133CrossRefGoogle Scholar
  42. [42]
    Kresse G., Furthmüller J., Phys. Rev. B, 1996, 54(16), 11169CrossRefGoogle Scholar
  43. [43]
    Blöchl P. E., Phys. Rev. B, 1994, 50(24), 17953CrossRefGoogle Scholar
  44. [44]
    Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77(18), 3865PubMedCrossRefPubMedCentralGoogle Scholar
  45. [45]
    Krivanek O. L., Chisholm M. F., Nicolosi V., Pennycook T. J., Corbin G. J., Dellby N., Murfitt M. F., Own C. S., Szilagyi Z. S., Oxley M. P., Pantelides S. T., Pennycook S. J., Nature, 2010, 464(7288), 571PubMedCrossRefPubMedCentralGoogle Scholar
  46. [46]
    Chen N. K., Li X. B., Bang J., Wang X. P., Han D., West D., Zhang S. B., Sun H. B., Phys. Rev. Lett., 2018, 120(18), 185701PubMedCrossRefPubMedCentralGoogle Scholar
  47. [47]
    Chen N. K., Li X. B., Wang X. P., Tian W. Q., Zhang S. B., Sun H. B., Acta Mater., 2018, 143, 102CrossRefGoogle Scholar
  48. [48]
    Li X. B., Liu X. Q., Han X. D., Zhang S. B., Phys. Status Solidi B, 2012, 249(10), 1861CrossRefGoogle Scholar
  49. [49]
    Li X. B., Chen N. K., Wang X. P., Sun H. B., Adv. Funct. Mater., 2018, 28(44), 1803380CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Xiangyang Ren
    • 1
    • 2
  • Sha Xia
    • 1
  • Zhiguo Zhang
    • 2
  • Xing Meng
    • 3
  • Hongmei Yu
    • 4
  • Qi Wu
    • 4
  • Wenyi Zhang
    • 5
  • Aiwu Li
    • 1
    Email author
  • Han Yang
    • 1
    Email author
  1. 1.State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunP. R. China
  2. 2.Shenyang Acadamy of Instrumentation Science Co., Ltd.ShenyangP. R. China
  3. 3.College of PhysicsJilin UniversityChangchunP. R. China
  4. 4.College of Computer Science and TechnologyJilin UniversityChangchunP. R. China
  5. 5.Systems Engineering Research InstituteBeijingP. R. China

Personalised recommendations