Direct Pyrolysis of Molybdophosphate-based Ionic Salt for One-step Synthesis of N,P Co-doped Carbon/MoO3-x Hybrids with Superior Lithium Storage Performance

  • Lifeng ZhangEmail author
  • Kechao Shen
  • Yongtao Jiang
  • Yu Guo
  • Yi Liu
  • Shouwu GuoEmail author


N,P co-doped carbon/MoO3-x hybrids(NPC/MoO3-x) were synthesized via one-step pyrolysis of molyb-dophosphate-based ionic salt precursor. Doped carbon and oxygen vacancies(OVs) were synchronously introduced into the NPC/MoO3-x hybrids without any other redundant procedure. As anodes for lithium-ion batteries, the NPC/MoO3-x hybrids delivered a high initial Coulombic efficiency(ICE) of 81% as well as high charge capacity of 516 mA·h/g after 100 cycles at 1 A/g, indicating the excellent reversibility and rate capability. The enhanced lithium storage performance was attributed to the rational combination of surface engineering and OVs, which is beneficial to the more active sites and fast ionic/electronic transport.


Lithium ion battery Anode Molybdenum oxide Doped carbon Oxygen vacancy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_9149_MOESM1_ESM.pdf (521 kb)
En">Direct pyrolysis of molybdophosphate-based ionic salt to one-step synthesize N, P co-doped carbon/MoO3-X hybrids with superior lithium storage performance


  1. [1]
    Yang Z., Zhang J., Kintner-Meyer M. C. W., Lu X., Choi D., Lem-mon J. P., Chem. Rev., 2011, 111, 3577CrossRefGoogle Scholar
  2. [2]
    Goodenough J. B., Energy Environ. Sci., 2014, 7, 14CrossRefGoogle Scholar
  3. [3]
    Xie D., Xia X. H., Zhong Y., Wang Y. D., Wang D. H., Wang X. L., Tu J. P., Adv. Energy Mater., 2016, 7, 1601804CrossRefGoogle Scholar
  4. [4]
    Poizot P. L. S. G., Laruelle S., Grugeon S., Dupont L., Tarascon J. M., Natrue, 2000, 407, 496CrossRefGoogle Scholar
  5. [5]
    Zhu C., Mu X., van Aken P. A., Yu Y., Maier J., Angew. Chem. Int. Ed., 2014, 45, 2152CrossRefGoogle Scholar
  6. [6]
    Xiao Q., Fan Y., Wang X., Susantyoko R. A., Zhang Q., Energy En-viron. Sci., 2014, 7, 655CrossRefGoogle Scholar
  7. [7]
    He P., Yu H., Li D., Zhou H., J. Mater. Chem., 2012, 22, 3680CrossRefGoogle Scholar
  8. [8]
    Guo Q. B., Ma Y. F., Chen T. T., Xia Q. Y., Yang M., Xia H., Yu Y., ACS Nano, 2017, 11, 12658CrossRefGoogle Scholar
  9. [9]
    Zhang J., Shi Y., Ding Y., Peng L. L., Zhang W. K., Yu G. H., Adv. Energy Mater., 2017, 7, 1602876CrossRefGoogle Scholar
  10. [10]
    Chen L., Jiang H., Jiang H. B., Zhang H. X., Guo S. J., Hu Y. J., Li C. Z., Adv. Energy Mater., 2017, 7, 1602782CrossRefGoogle Scholar
  11. [11]
    Xue D. F., Zhu D. Z., Xiong W., Cao T. C., Wang Z. W., Lv Y. K., Li L. C., Liu M. X., Gan L. H., ACS Sustainable Chem. Eng., 2019, 7, 7024CrossRefGoogle Scholar
  12. [12]
    Wu H. L., Xia L., Ren J., Zheng Q. J., Xu C. G., Lin D. M., J. Mater. Chem. A, 2017, 5, 20458CrossRefGoogle Scholar
  13. [13]
    Song Z. Y., Duan H., Li L. C., Zhu D. Z., Cao T. C., Lv Y. K., Xiong W., Wang Z. W., Liu M. X., Gan L. H., Chem. Eng. J., 2019, 372, 1216CrossRefGoogle Scholar
  14. [14]
    Zhu L. W., Wu J., Zhang Q., Li X. K., Li Y. M., Cao X. B., J. Colloid Interf. Sci., 2017, 510, 32CrossRefGoogle Scholar
  15. [15]
    Yan J. J., Zhu D. Z., Lv Y. K., Xiong W., Liu M. X., Gan L. H., Chin. Chem. Lett., 2019, DOI: Google Scholar
  16. [16]
    Wang Q. D., Li Y. M., Wang K., Zhou J. T., Zhu L. W., Gu L., Hu J., Cao X. B., Electrochim. Acta, 2017, 257, 250CrossRefGoogle Scholar
  17. [17]
    Xie D., Xia X. H., Tang W. J., Zhong Y., Wang Y. D., Wang D. H., Wang X. L., Tu J. P., J. Mater. Chem. A, 2017, 5, 7578CrossRefGoogle Scholar
  18. [18]
    Wang X. J., Nesper R., Villevieille C., Novák P., Adv. Energy Mater., 2013, 3, 606CrossRefGoogle Scholar
  19. [19]
    Sun Y., Hu X., Luo W., Huang Y., ACS Nano, 2011, 5, 7100CrossRefGoogle Scholar
  20. [20]
    Qiu J., Yang Z. X., Li Y., J. Mater. Chem. A, 2015, 3, 24245CrossRefGoogle Scholar
  21. [21]
    Hu X. L., Zhang W., Liu X. X., Mei Y. N., Huang Y. H., Chem. Soc. Rev., 2015, 3, 2376CrossRefGoogle Scholar
  22. [22]
    Noerochim L., Wang J. Z., Wexler D., Chao Z., Liu H. K., J. Power Sources, 2013, 228, 198CrossRefGoogle Scholar
  23. [23]
    Meduri P., Clark Ezra., Kim J. H., Dayalan E., Sumanasekera G. U., Sunkara M. K., Nano Lett., 2012, 12, 1784CrossRefGoogle Scholar
  24. [24]
    Schaub R., Wahlström E., Rønnau A., Lægsgaard E., Stensgaard I., Besenbacher F., Science, 2003, 299, 377CrossRefGoogle Scholar
  25. [25]
    Xu Y., Zhou M., Wang X., Wang C. L., Liang L. Y., Grote F. B., Wu M. H., Mi Y., Lei Y., Angew. Chem., 2015, 54, 8892CrossRefGoogle Scholar
  26. [26]
    Kim H. S., Cook J. B., Lin H., Ko J. S., Tolbert S. H., Ozolins V., Dunn B., Nature Mater., 2017, 16, 454CrossRefGoogle Scholar
  27. [27]
    Yang C. L., Liu X. W., Yang Z. Z., Gu L., Yu Y., Adv. Mater. Inter-faces, 2016, 3, 1600730CrossRefGoogle Scholar
  28. [28]
    Li Y. F., Wang D. D., An Q. Y., Ren B., Rong Y. G., Yao Y., J. Mater. Chem. A, 2016, 4, 5402CrossRefGoogle Scholar
  29. [29]
    Xu G. Q., Liu P., Ren Y. R., Huang X. B., Peng Z. G., Tang Y. G., Wang H. Y., J. Power Sources, 2017, 361, 1CrossRefGoogle Scholar
  30. [30]
    Lin S., Zheng Y., Xu L. M., Wang S. M., Chem. J. Chinese Universi-ties, 2000, 21(8), 1248Google Scholar
  31. [31]
    Yang H., Qi X., Wen L., Lu C., Cheng G., Ind. Eng. Chem. Res., 2011, 50, 58Google Scholar
  32. [32]
    Liu M. X., Gan L. H., Xiong W., Xu Z. J., Zhu D. Z., Chen L. W., J. Mater. Chem. A, 2014, 2, 2555CrossRefGoogle Scholar
  33. [33]
    Wang C. L., Sun L. S., Wang X. X., Cheng Y., Yin D. M., Yuan D. X., Li Q., Wang L. M., ChemElectroChem, 2017, 4, 2915CrossRefGoogle Scholar
  34. [34]
    Liu J., Wei A. X., Chen M. H., Xia X. H., J. Mater. Chem. A, 2018, 6, 3857CrossRefGoogle Scholar
  35. [35]
    Li X., Xu J. T., Mei L., Zhang Z. J., Cui C. Y., Liu H. K., Ma J. M., Dou S. X., J. Mater. Chem. A, 2015, 3, 3257CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShaanxi University of Science and TechnologyXi’anP. R. China
  2. 2.Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and TechnologyXi’anP. R. China
  3. 3.School of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiP. R. China

Personalised recommendations