Advertisement

A New Strategy for Improving the Efficiency of Low-temperature Selective Catalytic Reduction of NOx with CH4via the Combination of Non-thermal Plasma and Ag2O/TiO2 Photocatalyst

  • Hui Wang
  • Jiafeng Wang
  • Lei Zhang
  • Qinqin YuEmail author
  • Zewen Chen
  • Shengji WuEmail author
Article

Abstract

In the present work, a remarkable combination of non-thermal plasma and photocatalyst was developed to widen the operating temperature window of selective catalytic reduction(SCR) of NOx with CH4, especially to im-prove the low-temperature removal efficiency of NOx. It was shown that the operating temperature window was significantly widened. Among all the catalysts prepared, 1%Ag2O/TiO2 showed the highest catalytic activity for NOx removal due to the utilization of near ultraviolet light. The conversion of NOx to N2 over the in-plasma 1%Ag2O/TiO2 photocatalyst at 60 and 300 °C could achieve 31.8% and 53.0%, respectively. The combination mode of plasma and catalyst affected NOx removal efficiency greatly, the in-plasma catalysis outperformed the post-plasma catalytic mode remarkably, signifying the contribution of photocatalytic processes on the catalysts. Meanwhile, the characterizations of the catalyst demonstrated that the morphology and structure of the Ag2O/TiO2 catalyst were unchanged throughout the non-thermal plasma and photocatalytic processes, implying the superior stability of the catalyst.

Keywords

Non-thermal plasma Photocatalyst NOx Ag2O/TiO2 CH4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_9141_MOESM1_ESM.pdf (16.7 mb)
A new strategy for improving the efficiency of low-temperature SCR of NOx with CH4 via the combination of non-thermal plasma and Ag2O/TiO2 photocatalyst

References

  1. [1]
    Wang S. Y., Jiang S. P., Natl. Sci. Rev., 2017, 4(2), 163CrossRefGoogle Scholar
  2. [2]
    Makogon Y. F., Holditch S. A., Makogon T. Y., J. Petrol. Sci. Eng., 2007, 56(1), 14CrossRefGoogle Scholar
  3. [3]
    Zhan S. H., Zhang H., Zhang Y., Shi Q., Li Y., Li X. J., Appl. Catal. B-Environ., 2017, 203, 199CrossRefGoogle Scholar
  4. [4]
    Han S., Ye Q., Cheng S. Y., Kang T. F., Dai H. X., Catal. Sci. Technol., 2017, 7(3), 703CrossRefGoogle Scholar
  5. [5]
    Li P. X., Zhang R. D., Liu N., Royer S., Appl. Catal. B-Environ., 2017, 203, 174CrossRefGoogle Scholar
  6. [6]
    Zhang R. D., Yang W., Luo N., Li P. X., Lei Z. G., Chen B. H., Appl. Catal. B-Environ., 2014, 146(3), 94CrossRefGoogle Scholar
  7. [7]
    Mendes A. N., Lauga V., Capela S., Ribeiro M. F., Costa P. D., Henriques C., Top. Catal., 2016, 59(10–12), 982Google Scholar
  8. [8]
    Xu G. Y., Ma J. Z., He G. Z., Yu Y. B., Hong H., Appl. Catal. B-Environ., 2017, 207, 60CrossRefGoogle Scholar
  9. [9]
    Pan H., Guo Y. H., Jian Y. F., He C., Energ. Fuel, 2015, 29(8), 5282CrossRefGoogle Scholar
  10. [10]
    Li Y. F., Su J. J., Ma J. H., Feng Y., Chen J. Q., Li R. F., Catal. Commun., 2015, 65, 6CrossRefGoogle Scholar
  11. [11]
    Gil B., Janas J., Wloch E., Olejniczak Z., Datka J., Sulikowski B., Catal. Today, 2008, 137(2), 174CrossRefGoogle Scholar
  12. [12]
    Chen X. M., Zhu A. M., C. T. Au., Shi C., Catal. Lett., 2011, 141(1), 207CrossRefGoogle Scholar
  13. [13]
    Kim S. S., Sang H. C., Sang M. L., Hong S. C., J. Ind. Eng. Chem., 2012, 18(1), 272CrossRefGoogle Scholar
  14. [14]
    Ogura M., Kage S., Hayashi M., Matsukata M., Kikuchi E., Appl. Catal. B-Environ., 2000, 27(4), 213CrossRefGoogle Scholar
  15. [15]
    Theinnoi K., Sitshebo S., Houel V., Rajaram R. R., Tsolakis A., Energ. Fuel, 2008, 22(6), 4109CrossRefGoogle Scholar
  16. [16]
    Rao K. N., Ha H. P., Appl. Catal. A-Gen., 2012, 433/434(16), 162CrossRefGoogle Scholar
  17. [17]
    Xu S. C., Li J. H., Yang D., Hao J. M., J. Phys. Chem. C, 2011, 112, 16052CrossRefGoogle Scholar
  18. [18]
    Shi C., Cheng M. J., Qu Z. P., Bao X. H., J. Mol. Catal. A-Chem., 2005, 235(1), 35CrossRefGoogle Scholar
  19. [19]
    Mendes A. N., Zholobenko V. L., Thibault-Starzyk F., Costa P. D., Henriques C., Appl. Catal. B-Environ., 2016, 195, 121CrossRefGoogle Scholar
  20. [20]
    Wang H., Cao Y. Y., Chen Z. W., Yu Q. Q., Wu S. J., Fuel, 2018, 224, 323CrossRefGoogle Scholar
  21. [21]
    Lee D. H., Lee J. O., Kim K. T., Song Y. H., Kim E., Han H. S., Int. J. Hydrogen Energ., 2011, 36(18), 11718CrossRefGoogle Scholar
  22. [22]
    Buda I. G., Irimiea C., Agheorghiesei C., Chiper A. S., IEEE T. Plasma Sci., 2015, 43(2), 572CrossRefGoogle Scholar
  23. [23]
    Choi J. H., Lee T. I., Han I., Baik H. K., Song K. M., Lim Y. S., Lee E. S., Plasma Sources Sci. T., 2006, 15, 416CrossRefGoogle Scholar
  24. [24]
    Wagner H. E., Brandenburg R., Kozlov K. V., Morozov A. M., Contrib. Plasm. Phys., 2010, 45(5/6), 338Google Scholar
  25. [25]
    Jõgi I., Stamate E., Irimiea C., Schmidt M., Brandenburg R., Hołub M., Bonisławski M., Jakubowski T., Kääriäinen M. L., Cameron D. C., Fuel, 2015, 144, 137CrossRefGoogle Scholar
  26. [26]
    Saloum S., Naddaf M., Alkhaled B., J. Phys. D-Appl. Phys., 2008, 41(4), 045205CrossRefGoogle Scholar
  27. [27]
    Zhang S. H., Yu X. L., Chen L. H., Zhang X. Y., Chinese Phys. Lett., 2013, 30(8), 085203CrossRefGoogle Scholar
  28. [28]
    Li Y. Z., Fan Z. Y., Shi J. W., Liu Z. Y., Shangguan W. F., Chem. Eng. J., 2014, 241(4), 251CrossRefGoogle Scholar
  29. [29]
    Tang X. J., Feng F. D., Ye L. L., Zhang X. M., Huang Y. F., Liu Z., Yan K. P., Catal. Today, 2013, 211(4), 39CrossRefGoogle Scholar
  30. [30]
    Song C. L., Feng B., Tao Z. M., Li F. C., Huang Q. F., J. Hazard. Mater., 2009, 166(1), 523CrossRefGoogle Scholar
  31. [31]
    Niu J. H., Yang X. F., Zhu A. M., Shi L. L., Sun Q., Xu Y., Shi C., Catal. Commun., 2006, 7(5), 297CrossRefGoogle Scholar
  32. [32]
    Porta P., Morpurgo S., Appl. Clay Sci., 1995, 10(1/2), 31CrossRefGoogle Scholar
  33. [33]
    Chmielarz L., Kuśtrowski P., Rafalska-Łasocha A., Majda D., Dziembaj R., Appl. Catal. B-Environ., 2002, 35(3), 195CrossRefGoogle Scholar
  34. [34]
    Ren H. T., Jia S. Y., Zou J. J., Wu S. H., Han X., Appl. Catal. B-Environ., 2015, 176/177(14), 53CrossRefGoogle Scholar
  35. [35]
    Li H. D., Chen T. H., Wang Y., Tang J. G., Wang Y., Sang Y. H., Liu H., Chinese J. Catal., 2017, 38(6), 1063CrossRefGoogle Scholar
  36. [36]
    Elder S. H., Cot F. M., Su Y., Heald S. M., Tyryshkin A. M., Bowman M. K., Gao Y., Joly A. G., Balmer M. L., Kolwaite A. C., J. Am. Chem. Soc., 2000, 122, 5138CrossRefGoogle Scholar
  37. [37]
    Han E., Vijayarangamuthu K., Youn J. S., Park Y. K., Jung S. C., Jeon K. J., Catal. Today, 2018, 303, 305CrossRefGoogle Scholar
  38. [38]
    Yu J. G., Yu H. G., Cheng B., Zhou M. H., Zhao X. J., J. Mol. Catal. A-Chem., 2006, 253(1), 112CrossRefGoogle Scholar
  39. [39]
    Mathew S., Prasad A. K., Benoy T., Rakesh P. P., Hari M., Libish T. M., Radhakrishnan P., Nampoori V. P. N., Vallabhan C. P. G., J. Fluoresc., 2012, 22(6), 1563CrossRefGoogle Scholar
  40. [40]
    Zhang M., Sun R. Z., Li Y. J., Shi Q. M., Xie L. H., Chen J. S., Xu X. H., Shi H. X., Zhao W. L., J. Phys. Chem. C, 2016, 120(20), 10746CrossRefGoogle Scholar
  41. [41]
    Pan H., Guo Y. H., Jian Y. F., He C., Energ. Fuel, 2015, 29(8), 5282CrossRefGoogle Scholar
  42. [42]
    Yu Q. Q., Liu T., Wang H., Xiao L. P., Chen M., Jiang X. Y., Zheng X. M., Chinese J. Catal., 2012, 33(4–6), 783CrossRefGoogle Scholar
  43. [43]
    Jiang Z., Ouyang Q., Peng B., Zhang Y. X., Zan L., J. Mater. Chem. A., 2014, 2(46), 19861CrossRefGoogle Scholar
  44. [44]
    Eom H., Jung J. Y., Shin Y., Kim S., Choi J. H., Lee E., Jeong J. H., Park I., Nanoscale, 2013, 6(1), 226CrossRefGoogle Scholar
  45. [45]
    Vandenbulcke L., Persis S. D., Gries T., Delfau J. L., J. Taiwan Inst. Chem. E., 2012, 43(5), 724CrossRefGoogle Scholar
  46. [46]
    Majumdar A., Singh R. K., Palm G. J., Hippler R., J. Appl. Phys., 2009, 106(8), 084701CrossRefGoogle Scholar
  47. [47]
    Wang H., Li X. X., Chen P., Chen M., Zheng X. M., Chem. Commun., 2013, 49(81), 9353CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhouP. R. China
  2. 2.School of Chemistry, Chemical Engineering and Life SciencesWuhan University of TechnologyWuhanP. R. China

Personalised recommendations