Advertisement

Synthesis of Pt-SnOx/TS-1@SBA-16 Composites and Their High Catalytic Performance for Propane Dehydrogenation

  • Hongda Li
  • Zhen ZhaoEmail author
  • Jiacheng Li
  • Jianmei Li
  • Linlin Zhao
  • Jiachen Sun
  • Xiaoqiang Fan
Article
  • 5 Downloads

Abstract

novel composite material of TS-1@SBA-16 was synthesized by enwrapping TS-1 zeolite crystals with mesoporous SBA-16 silica. This composite was used as catalyst support for loading Pt-SnOx in the propane dehydro-genation(PDH) reaction. Catalysts were characterized by means of N2 adsorption-desorption, XRD, SEM, TEM XPS, UV-Vis, and Raman spectroscopy. The effect of different contents of TS-1 on PDH was investigated, and the optimal amount of TS-1 was determined to be 10%. The catalyst with TS-1 content of 10% showed the highest PDH activity and the initial conversion of propane over it can achieve 54.5%, higher than those over TS-1 or SBA-16-supported ones. The superior catalytic performance of Pt-SnOx/TS-1@SBA-16 is related to the synergistic effect of the excellent mass transfer performance through the hierarchical porous structure, suitable acid acidity and electronic effect of Ti species.

Keywords

Catalyst Pt-SnOx Propane Dehydrogenation TS-1 zeolite Micro- and meso-porous material 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_9120_MOESM1_ESM.pdf (400 kb)
Synthesis of the catalysts of Pt-SnOx supported on a composite of TS-1 zeolite enwrapped with mesoporous SBA-16 material and their high catalytic performance for propane dehydrogenation

References

  1. [1]
    Azzam K. G., Jacobs G., Shafer W. D., Davis B. H., Appl. Catal. A, 2010, 390, 264CrossRefGoogle Scholar
  2. [2]
    Baek J., Yun H. J., Yun D., Choi Y., Yi Y., ACS Catal., 2012, 2, 1893CrossRefGoogle Scholar
  3. [3]
    Ren Y., Zhang F., Hua W. M., Yue Y. H., Gao Z., Catal. Today, 2009, 148, 316CrossRefGoogle Scholar
  4. [4]
    Wang G. W., Zhang H. L., Wang H. R., Zhu Q. Q., Li C. Y., Shan H. H., J. Catal., 2016, 344, 606CrossRefGoogle Scholar
  5. [5]
    Sattler J. J. H. B., Gonzalez-Jimenez I. D., Luo L., Steers B. A., Malik A., Barton D. G., Kilos B. A., Kaminsky M. P., Verhoeven T., Koers E. J., Baldus M., Weckhuysen B. M., Angew. Chem. Int. Ed., 2014, 53, 9251CrossRefGoogle Scholar
  6. [6]
    Zhang Y. W., Zhou Y. M., Qiu A. D., Wang Y., Xu Y., Wu P. C., Catal. Commun., 2006, 7, 860CrossRefGoogle Scholar
  7. [7]
    Sattler J. J., Ruizmartinez J., Santillanjimenez E., Weckhuysen B. M., Chem. Rev., 2014, 114, 10613CrossRefGoogle Scholar
  8. [8]
    Yang W. S., Wu R. A., Lin L. W., Petro. Technol., 1993, 23, 347Google Scholar
  9. [9]
    Long L. L., Lang W. Z., Yan X., Xia K., Guo Y. J., Fuel Process. Technol., 2016, 146, 48CrossRefGoogle Scholar
  10. [10]
    Jiang F., Zeng L., Li S. R., Liu G., Wang S. P., Gong J. L., ACS Catal., 2015, 5, 438CrossRefGoogle Scholar
  11. [11]
    Tanabe K., Hölderich W. F., Appl. Catal. A, 1999, 181, 399CrossRefGoogle Scholar
  12. [12]
    Zhang Y. W., Zhou Y. M., Li H., Zhou S. J., Sheng X. L., Wang Q. L., Zhang C., Chem. Eng. J., 2015, 270, 352CrossRefGoogle Scholar
  13. [13]
    Zhang Y. W., Xue M. W., Zhou Y. M., Zhang H. X., Wang W., Wang Q. L., Sheng X. L., RSC Advances, 2016, 6, 29410CrossRefGoogle Scholar
  14. [14]
    Nazwz Z., Tang X. P., Zhang Q., Wang D. Z., Fei W., Catal. Commun., 2009, 10, 1925CrossRefGoogle Scholar
  15. [15]
    Nazwz Z., Tang X. P., Wang Y., Fei W., Ind. Eng. Chem. Res., 2010, 49, 1274CrossRefGoogle Scholar
  16. [16]
    Nazwz Z., Baksh F., Zhu J., Fei W., J. Ind. Eng. Chem. 2013, 19, 540CrossRefGoogle Scholar
  17. [17]
    Nazwz Z., Fei W., J. Ind. Eng. Chem., 2010, 16, 774CrossRefGoogle Scholar
  18. [18]
    Na K., Jo C., Kim J., Cho K., Jung J., Seo Y., Messinger R. J., Chmelka B. F., Ryoo R., Science, 2011, 333, 328CrossRefGoogle Scholar
  19. [19]
    Ramírez P., Christensen J., C. H., Egeblad K., Christensen C. H., Groen J. C., Chem. Soc. Rev., 2008, 37, 2530CrossRefGoogle Scholar
  20. [20]
    Sun Y. Y., Prins R., Angew. Chem. Int. Ed., 2010, 47, 8478CrossRefGoogle Scholar
  21. [21]
    Jacobsen C. J. H., Madsen C., Houzvicka J., Schmidt I., Carlsson A., J. Am. Chem. Soc., 2000, 122, 7116CrossRefGoogle Scholar
  22. [22]
    Reddy J. K., Motokura K., Koyama T., Miyaji A., Baba T., J. Catal., 2012, 289, 53CrossRefGoogle Scholar
  23. [23]
    Shan Z. C., Wang H., Meng X. J., Liu S. Y., Wang L., Wang C. Y., Li F., Lewis J. P., Xiao F. S., Chem. Commun., 2011, 47, 1048CrossRefGoogle Scholar
  24. [24]
    Zhang Y. W., Zhou Y. M., Shi J. J., Zhou S. J., Sheng X. L., Zhang Z. W., Xiang S. M., J. Mol. Catal. A: Chem., 2014, 381, 138CrossRefGoogle Scholar
  25. [25]
    Fan X. Q., Li J. M., Zhao Z., Wei Y. C., Liu J., Duan A. J., Jiang G. Y., Catal. Sci. Technol., 2015, 5, 339CrossRefGoogle Scholar
  26. [26]
    Li J. C., Li J. M., Zhao Z., Fan X. Q., Liu J., Wei Y. C., Duan A. J., Xie Z. A., Liu Q. L., J. Catal., 2017, 352, 361CrossRefGoogle Scholar
  27. [27]
    Schwieger W., Machoke A. G., Weissenberger T., Inayat A., Selvam T., Klumpp M., Inayat A., Chem. Soc. Rev., 2016, 45, 3353CrossRefGoogle Scholar
  28. [28]
    Yang Y., Li L. H., Li Y., Rooke J., Sanchez C., Su B. L., Chem. Soc. Rev., 2017, 46, 481CrossRefGoogle Scholar
  29. [29]
    Wu H. D., Duan A. J., Zhao Z., Li T. S., Prins R., Zhou X. F., J. Catal., 2014, 317, 303CrossRefGoogle Scholar
  30. [30]
    Zhao D. Y., Huo Q. S., Feng J. L., Chmelka B. F., Stucky G. D., J. Am. Chem. Soc., 1998, 136, 6024CrossRefGoogle Scholar
  31. [31]
    Kong L., Li J. M., Liu Q. L., Zhao Z., Sun Q. Y., Liu J., Wei Y. C., Appl. Catal. A, 2016, 510, 84CrossRefGoogle Scholar
  32. [32]
    Kim T. W., Ryoo R., Kruk M., Giersal K. P., Jaroniec M., Kamiya S., Terasaki O., J. Phys. Chem. B, 2004, 108, 11480CrossRefGoogle Scholar
  33. [33]
    Lee W. S., Zhang R., Akatay M. C., Baertsch C. D., Stach E. A., Ribeiro F. H., Delgass W. N., ACS Catal., 2011, 1, 1327CrossRefGoogle Scholar
  34. [34]
    Dong Y. L., Zhan X. L., Niu X. Y., Li J., Yuan F. L., Zhu Y. J., Fu H. G., Microporous Mesoporous Mater., 2014, 185, 97CrossRefGoogle Scholar
  35. [35]
    Wang X., Zhang X., Wang Y., Liu H., Qiu J., Wang J., Han W., Yeung K. L., ACS Catal., 2011, 1, 437CrossRefGoogle Scholar
  36. [36]
    Marchese L., Maschmeyer T., Gianotti E., Coluccia S., Thomas J. M., J. Phys. Chem. B, 1997, 101, 8836CrossRefGoogle Scholar
  37. [37]
    Lee E. L., Wachs I. E., J. Phys. Chem. C, 2015, 111, 14410CrossRefGoogle Scholar
  38. [38]
    Li C., Xiong G., Xin Q., Liu J. K., Ying P. L., Feng Z. C., Li J., Yang W. B., Wang Y. Z., Wang G. R., Liu X. Y., Lin M., Wang X. Q., Min E. Z., Angew. Chem. Int. Ed., 1999, 38, 2220CrossRefGoogle Scholar
  39. [39]
    Ma Z. C., Yang H. Q., Qin Y., Hao Y. J., Li G., J. Mol. Catal. A: Chem., 2010, 331, 78CrossRefGoogle Scholar
  40. [40]
    Hsu C. Y., Chiang A. S. T., Selvin R., Thompson R. W., J. Phys. Chem. B, 2005, 109, 18804CrossRefGoogle Scholar
  41. [41]
    Bezouhanova C. P., Zarev L., Lechert H., Catal. Lett., 1994, 25, 169CrossRefGoogle Scholar
  42. [42]
    Yu C. L., Xu H. Y., Ge Q. J., Li W. Z., J. Mol. Catal. A: Chem., 2007, 266, 80CrossRefGoogle Scholar
  43. [43]
    Arandiyan H., Dai H. X., Ji K. M., Sun H. Y., Li J. H., ACS Catal., 2005, 5, 1781CrossRefGoogle Scholar
  44. [44]
    Österlund L., Kielbassa S., Werdinius C., Kasemo B., J. Catal., 2003, 215, 94CrossRefGoogle Scholar
  45. [45]
    Nawaz Z., Wei F., Ind. Eng. Chem. Res., 2009, 48, 7442CrossRefGoogle Scholar
  46. [46]
    Chakrabarti A., Forda M. E., Gregorya D., Hua R. R., Keturakis C. J., Lwina S., Tang Y. D., Zhou Y. G., Zhua M. H., Banares M. A., Wachs I. E., Catal. Today, 2016, 283, 27CrossRefGoogle Scholar
  47. [47]
    Hayhurst D. T., Paravar A. R., Zeolites, 1998, 8, 27CrossRefGoogle Scholar
  48. [48]
    Wu Z., Stair P., J. Catal., 2006, 273, 220CrossRefGoogle Scholar
  49. [49]
    Schwan J., Ulrich S., Batori V., Ehrhardt H., Silva S. J., Appl. Phys., 1996, 80, 440CrossRefGoogle Scholar
  50. [50]
    Juez A. I., Beale A. M., Maaijen K., Weng T. C., Glatzel P., Weckhuysen B. M., J. Catal., 2010, 276, 268CrossRefGoogle Scholar
  51. [51]
    Wang Y., Alsmeyer D., McCreery R., Chem. Mater., 1990, 2, 557CrossRefGoogle Scholar
  52. [52]
    Sattler J. J. H. B., Beale A. M., Weckhuysen B. M., Phys. Chem. Chem. Phys., 2013, 15, 12095CrossRefGoogle Scholar
  53. [53]
    Pimenta M. A., Dresselhaus G., Dresselhaus M. S., Cancado L. G., Jorio A., Saito R., Phys. Chem. Chem. Phys., 2007, 9, 1276CrossRefGoogle Scholar
  54. [54]
    Sadezky A., Muckenhuber H., Grothe H., Niessner R., Pöschl U., Carbon, 2005, 43, 1731CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Hongda Li
    • 1
  • Zhen Zhao
    • 1
    • 2
    Email author
  • Jiacheng Li
    • 1
  • Jianmei Li
    • 1
  • Linlin Zhao
    • 2
  • Jiachen Sun
    • 1
  • Xiaoqiang Fan
    • 2
  1. 1.State Key Laboratory of Heavy Oil ProcessingChina University of PetroleumBeijingP. R. China
  2. 2.Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical EngineeringShenyang Normal UniversityShenyangP. R. China

Personalised recommendations