Advertisement

Benzohydrazide Derivatives: Gelation and Application in Oil Spill Recovery

  • Tianren Zhang
  • Chunxue Zhang
  • Xiangyang Che
  • Binglian Bai
  • Min LiEmail author
  • Haitao WangEmail author
Article
  • 3 Downloads

Abstract

The synthesis and gelation properties of a series of organogelators containing a benzohydrazide unit and two alkoxy chains(oBn) were reported herein. oBn(n=8, 10, 12) could form stable gels in commercial fuels(e.g., diesel), which were characterized by low critical gelation concentrations(CGCs) and good mechanical properties (G′>105 Pa). The gelation process was further studied by field-emission scanning electron microscopy(FE-SEM), Fourier transform infrared spectroscopy(FTIR) and X-ray diffraction(XRD), etc. It was demonstrated that in these organogels, molecules self-assembled into fibrils 3D-network, where hydrogen bonding, van der Waals force and π-π interaction were confirmed as the driving forces. As compounds oBn(n=8, 10, 12) show very good gelation properties in diesel, their applications in oil spill treatment have also been tested. It was found that oBn could achieve rapid (<30 s) and effective oil removal at room temperature, being good candidates for oil spill treatment in the future. Also, the removal efficiency could be as high as 95%.

Keywords

Benzohydrazide derivative Organogel Self-assembly Oil spill recovery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_9089_MOESM1_ESM.pdf (748 kb)
Benzohydrazide Derivatives: Gelation and Application in Oil Spill Recovery

References

  1. [1]
    Steed J. W., Chem. Soc. Rev., 2010, 39(10), 3686CrossRefGoogle Scholar
  2. [2]
    Chen Y., Pang X. H., Dong C. M., Adv. Funct. Mater., 2010, 20(4), 579CrossRefGoogle Scholar
  3. [3]
    Häring M., Díaz D. D., Chem. Commun., 2016, 52(89), 13068CrossRefGoogle Scholar
  4. [4]
    Okesola B. O., Smith D. K., Chem. Soc. Rev., 2016, 45(15), 4226CrossRefGoogle Scholar
  5. [5]
    Motta F. L., Stoyanov S. R., Soares J. B. P., Chemosphere, 2018, 194, 837CrossRefGoogle Scholar
  6. [6]
    Christoff-Tempesta T., Lew A. J., Ortony J. H., Gels, 2018, 4(2), 40CrossRefGoogle Scholar
  7. [7]
    Bohannon J., Bosch X., Withgott J., Science, 2002, 298, 1695CrossRefGoogle Scholar
  8. [8]
    Zheng Q. A., Zhao Q., Nan W., Li C. Y., Acta Oceanol. Sin., 2010, 29(4), 1CrossRefGoogle Scholar
  9. [9]
    Sundaravadivelu D., Suidan M. T., Venosa A. D., Rosales P. I., Chemosphere, 2016, 144, 1490CrossRefGoogle Scholar
  10. [10]
    Kujawinski E. B., Kido S. M. C., Valentine D. L., Boysen A. K., Longnecker K., Redmond M. C., Environ. Sci. Technol., 2011, 45(4), 1298CrossRefGoogle Scholar
  11. [11]
    Atlas R. M., Hazen T. C., Environ. Sci. Technol., 2011, 45(16), 6709CrossRefGoogle Scholar
  12. [12]
    Buist I., McCourt J., Potter S., Ross S., Trudel K., Pure Appl. Chem., 1999, 71(1), 43CrossRefGoogle Scholar
  13. [13]
    Bhattacharya S., Krishnan-Ghosh Y., Chem. Commun., 2001, 2, 185CrossRefGoogle Scholar
  14. [14]
    Jadhav S. R., Vemula P. K., Kumar R., Raghavan S. R., John G., Angew. Chem. Int. Ed., 2010, 49(42), 7695CrossRefGoogle Scholar
  15. [15]
    Basak S., Nanda J., Banerjee A., J. Mater. Chem., 2012, 22(23), 11658CrossRefGoogle Scholar
  16. [16]
    Konda M., Maity I., Rasale D. B., Das A. K., ChemPlusChem, 2014, 79(10), 1482CrossRefGoogle Scholar
  17. [17]
    Ohsedo Y., Polym. Adv. Technol., 2016, 27(6), 704CrossRefGoogle Scholar
  18. [18]
    Podder D., Chowdhury S. R., Nandi S. K., Haldar D., New J. Chem., 2019, 43(9), 3743CrossRefGoogle Scholar
  19. [19]
    Chen A. J., Samankumara L. P., Garcia C., Bashaw K., Wang G. J., New J. Chem., 2019, 43(21), 7950CrossRefGoogle Scholar
  20. [20]
    Zhuan C. L., Li Y., Yuan X. B., Zhao J., Hou X., J. Appl. Polym. Sci., 2019, 136(6), 47052CrossRefGoogle Scholar
  21. [21]
    Basu K., Nandi N., Mondal B., Dehsorkhi A., Hamley I. W., Banerjee A., Interface Focus, 2017, 7(6), 20160128CrossRefGoogle Scholar
  22. [22]
    Weiss R. G., J. Am. Chem. Soc., 2014, 136(21), 7519CrossRefGoogle Scholar
  23. [23]
    Lan Y., Corradini M. G., Weiss R. G., Raghavan S. R., Rogers M. A., Chem. Soc. Rev., 2015, 44(17), 6035CrossRefGoogle Scholar
  24. [24]
    Nandi M., Maiti B., Banerjee S., De P., J. Polym. Sci., Part A: Polym Chem., 2019, 57(4), 511CrossRefGoogle Scholar
  25. [25]
    Qu S. N., Li M., Tetrahedron, 2008, 64(48), 10890CrossRefGoogle Scholar
  26. [26]
    Zhang P., Qu S. N., Bai B. L., Wang H. T., Ran X., Zhao C. X., Li M., Liq. Cryst., 2009, 36(8), 817CrossRefGoogle Scholar
  27. [27]
    Zhang C. X., Zhang T. R., Ji N., Zhang Y., Bai B. L., Wang H. T., Li M., Soft Matter, 2016, 12(5), 1525CrossRefGoogle Scholar
  28. [28]
    Zhang C. X., Wu Y. F., Zhang Y., Zhang T. R., Bai B. L., Wang H. T., Li M., Soft Materials, 2017, 15(4), 255CrossRefGoogle Scholar
  29. [29]
    Gu X. J., Bai B. L., Wang H. T., Li M., RSC Adv., 2017, 7(1), 218CrossRefGoogle Scholar
  30. [30]
    Wei J., Chai Q., He L. H., Bai B. L., Wang H. T., Li M., Tetrahedron, 2016, 72(22), 3073CrossRefGoogle Scholar
  31. [31]
    Bai B. L., Zhang C. X., Wei J., Ma J., Lin X. L., Wang H. T., Li M., RSC Adv., 2013, 3(30), 12109CrossRefGoogle Scholar
  32. [32]
    Chen Y. L., Bai B. L., Chai Q., Wei J., Wang H. T., Li M., New J. Chem., 2019, 43(13), 5214CrossRefGoogle Scholar
  33. [33]
    Su T., Hong K. H., Zhang W. N., Li F., Li Q., Yu F., Luo G. X., Gao H. H., He Y. P., Soft Matter., 2017, 13(22), 4066CrossRefGoogle Scholar
  34. [34]
    Cao H. Q., Wang F. L., Zeng H. X., Gong R., Xin H., J. Mol. Liq., 2014, 196, 94CrossRefGoogle Scholar
  35. [35]
    Suzuki M., Nakajima Y., Yumoto M., Kimura M., Shirai H., Hanabusa K., Langmuir, 2003, 19(21), 8622CrossRefGoogle Scholar
  36. [36]
    Shirakawa M., Kawano S., Fujita N., Sada K., Shinkai S., J. Org. Chem., 2003, 68(13), 5037CrossRefGoogle Scholar
  37. [37]
    van Nostrum C. F., Picken S. J., Schouten A. J., Nolte R. J. M., J. Am. Chem. Soc., 1995, 117(40), 9957CrossRefGoogle Scholar
  38. [38]
    Yu X. D., Liu Q., Wu J. C., Zhang M. M., Cao X. H., Zhang S., Wang Q., Chen L. M., Yi T., Chem. Eur. J., 2010, 16(30), 9099CrossRefGoogle Scholar
  39. [39]
    Wang Y. Z., Wang Y. S., Yan X. R., Wu S. Q., Shao L., Liu Y. Y., Guo Z. H., Chemosphere, 2016, 153, 485CrossRefGoogle Scholar
  40. [40]
    Wang Y. Z., Wu S. Q., Yan X. R., Ma T., Shao L., Liu Y. Y., Guo Z. H., Chemosphere, 2017, 167, 178CrossRefGoogle Scholar
  41. [41]
    Mukherjee S., Shang C. D., Chen X. L., Chang X. M., Liu K. Q., Yu C. M., Fang Y., Chem. Commun., 2014, 50(90), 13940CrossRefGoogle Scholar
  42. [42]
    Mondal S., Bairi P., Das S., Nandi A. K., J. Mater. Chem. A, 2019, 7(1), 381CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.Key Laboratory for Automobile Materials, Ministry of Education, College of Materials Science and EngineeringJilin UniversityChangchunP. R. China
  2. 2.College of PhysicsJilin UniversityChangchunP. R. China

Personalised recommendations