Advertisement

Preparation and Properties of Hybrid Silane-crosslinked Sulfonated Poly(aryl ether ketone)s as Proton Exchange Membranes

  • Zhenchao Liu
  • Peng Wang
  • Wei Hu
  • Baijun LiuEmail author
Article
  • 5 Downloads

Abstract

A series of novel organic-inorganic hybrid proton-conducting electrolyte membranes with silane-crosslinked sulfonated poly(aryl ether ketone)(SC-SPAEK) networks was prepared via a simple procedure that includes solution casting and acid treatment. The organosilicon pendants of the silane-grafted SPAEK, which were expected to serve as coupling and crosslinking agents, were found to play a key role in the homogenous dispersion of inorganic particles and improved the performance of hybrid membranes. The hybrid membranes exhibited enhanced proton conductivity, and SC-SPAEK/TiO2-4 showed an extremely high proton conductivity of 0.1472 S/cm at 100 °C. The crosslinked hybrid membranes also demonstrated good chemical resistance, oxidative stability, and mechanical properties. The crosslinked hybrid membranes with excellent comprehensive performance may be a promising material for proton exchange membrane fuel cells.

Keywords

Proton-conducting electrolyte membrane Sulfonated poly(aryl ether ketones) Cross-linked network Hybrid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Li X., Ma H., Shen Y., Hu W., Jiang Z., Liu B., Guiver M. D., Journal of Power Sources, 2016, 336, 391CrossRefGoogle Scholar
  2. [2]
    Chen Y., Wang S. J., Xiao M., Meng Y. Z., Chem. J. Chinese Universities, 2007, 28(2), 362Google Scholar
  3. [3]
    Zhang H., Stanis R. J., Song Y., Hu W., Cornelius C. J., Shi Q., Liu B., Guiver M. D., Journal of Power Sources, 2017, 368, 30CrossRefGoogle Scholar
  4. [4]
    Song Y., Cao X., Liang Q., Jin Y., Qi Y., Hu W., Li K., Jiang Z., Liu B., Solid State Ionics, 2014, 258, 92CrossRefGoogle Scholar
  5. [5]
    Guo M., Liu B., Liu Z., Wang L., Jiang Z., Journal of Power Sources, 2009, 189, 894CrossRefGoogle Scholar
  6. [6]
    Su Y. H., Liu Y. L., Wang D. M., Lai J. Y., Guiver M. D., Liu B., Journal of Power Sources, 2009, 194, 206CrossRefGoogle Scholar
  7. [7]
    Bi H. P., Chen S. W., Wang J. L., Zhang X., Gao Z. L., Zhang S., Tao Y. Y., Wang L. J., Chem. J. Chinese Universities, 2009, 30(11), 2306Google Scholar
  8. [8]
    Pan H. Y., Liang Y. F., Zhu X. L., Zhang S. H., Jian X. G., Chem. J. Chinese Universities, 2007, 28(1), 173Google Scholar
  9. [9]
    Singha S., Jana T., Modestra J. A., Naresh Kumar A., Mohan S. V., Journal of Power Sources, 2016, 317, 143CrossRefGoogle Scholar
  10. [10]
    Kreuer K. D., Journal of Membrane Science, 2001, 185, 29CrossRefGoogle Scholar
  11. [11]
    Ren J., Zhang S., Liu Y., Wang Y., Pang J., Wang Q., Wang G., Journal of Membrane Science, 2013, 434, 161CrossRefGoogle Scholar
  12. [12]
    Song J. M., Lee S. Y., Woo H. S., Shin D. W., Sohn J. Y., Lee Y. M., Shin J., Journal of Membrane Science, 2014, 469, 209CrossRefGoogle Scholar
  13. [13]
    Guo M., Liu B., Li L., Liu C., Wang L., Jiang Z., Journal of Power Sources, 2010, 195, 11CrossRefGoogle Scholar
  14. [14]
    Ayyaru S., Dharmalingam S., Energy, 2015, 88, 202CrossRefGoogle Scholar
  15. [15]
    Di Noto V., Piga M., Piga L., Polizzi S., Negro E., Journal of Power Sources, 2008, 178, 561CrossRefGoogle Scholar
  16. [16]
    Zhu M., Song Y., Hu W., Li X., Jiang Z., Guiver M. D., Liu B., Journal of Membrane Science, 2012, 415/416, 520CrossRefGoogle Scholar
  17. [17]
    Salarizadeh P., Javanbakht M., Pourmahdian S., Solid State Ionics, 2015, 281, 12CrossRefGoogle Scholar
  18. [18]
    Ortiz-Negron A., Suleiman D., Journal of Applied Polymer Science, 2015, 132 Google Scholar
  19. [19]
    Ma R., Fang L., Luo Z., Zheng R., Song S., Weng L., Lei J., Applied Surface Science, 2014, 314, 341CrossRefGoogle Scholar
  20. [20]
    Zhao Y., Jiang Z., Lin D., Dong A., Li Z., Wu H., Journal of Power Sources, 2013, 224, 28CrossRefGoogle Scholar
  21. [21]
    Wang F., Chen T. L., Xu J. P., Macromolecular Chemistry and Physics, 1998, 199, 1421CrossRefGoogle Scholar
  22. [22]
    Jiang Z. J., Jiang Z., Tian X., Luo L., Liu M., ACS Applied Materials & Interfaces, 2017, 9, 20046CrossRefGoogle Scholar
  23. [23]
    Karlsson L. E., Jannasch P., Journal of Membrane Science, 2004, 230, 61CrossRefGoogle Scholar
  24. [24]
    Dai Y., Guiver M. D., Robertson G. P., Kang Y. S., Lee K. J., Jho J. Y., Macromolecules, 2004, 37, 1403CrossRefGoogle Scholar
  25. [25]
    Yan J., Hickner M. A., Macromolecules, 2010, 43, 2349CrossRefGoogle Scholar
  26. [26]
    Lin H., Zhao C., Jiang Y., Ma W., Na H., Journal of Power Sources, 2011, 196, 1744CrossRefGoogle Scholar
  27. [27]
    Chen C. C., Tsi H. Y., Tsen W. C. Chuang F. S., Jang S. C., Shu Y. C., Wen S., Gong C., Journal of Applied Polymer Science, 2012, 123, 1184CrossRefGoogle Scholar
  28. [28]
    Zhang S. H., Jiang Y. W., Chen L. Y., Jian X. G., Chem. J. Chinese Universities, 2013, 34(8), 1993Google Scholar
  29. [29]
    Ru C., Li Z., Zhao C., Duan Y., Zhuang Z., Bu F., Na H., ACS Applied Materials & Interfaces, 2018, 10, 7963CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.Key Laboratory of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of ChemistryJilin UniversityChangchunP. R. China
  2. 2.College of Chemical EngineeringChangchun University of TechnologyChangchunP. R. China

Personalised recommendations