Advertisement

Proton Conductivity Improvement Effect of Cellulose on SPEEKK Based PEM

  • Qi Zhao
  • Xiaoxiao Liang
  • Yingxue You
  • Yuliang Wang
  • Xinwei Du
  • Baijun Liu
  • Wei HuEmail author
Article
  • 3 Downloads

Abstract

The proton exchange membranes(PEMs) were prepared through the solution mixing method of sulfonated poly(ether ether ketone ketone)(sPEEKK) and cellulose. Cellulose was dissolved by 1-allyl-3-methylimidazolium chloride(AMIMCl) and then mixed with sPEEKK solution. sPEEKK/cellulose(SC) composite membranes were pre-pared by solution casting. The membranes have high flexibility and transparency, which meant the compounding in molecular level. Meanwhile, the composite membranes showed excellent mechanical properties and high proton conductivity. The mechanical property reached 29 MPa, and the proton conductivity was as high as 0.32 S/cm. Thus, as a kind of biomaterials, cellulose could be an excellent reinforcing material for poly(aryl ether ketone)(PAEK) based PEMs.

Keywords

Cellulose Poly(aryl ether ketone ketone) Ionic liquid Mechanical property Proton conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Song C., Catalysis Today, 2002, 77(1), 17CrossRefGoogle Scholar
  2. [2]
    Scofield M. E., Liu H. Q., Wong S. S., Chemical Society Reviews, 2015, 44(16), 5836CrossRefGoogle Scholar
  3. [3]
    Liu B. J., Hu W., Chen C. H., Jiang Z. H., Zhang W. J., Wu Z. W., Matsumoto T., Polymer, 2004, 45(10), 3241CrossRefGoogle Scholar
  4. [4]
    Xing P. X., Robertson G. P., Guiver M. D., Mikhailenko S. D., Wang K. P., Kaliaguine S., Journal of Membrane Science, 2004, 229(1), 95CrossRefGoogle Scholar
  5. [5]
    Parniana M. J., Rowshanzamir S., Gashoul F., Iranian Journal of Hydrogen & Fuel Cell, 2017, 3(3), 221Google Scholar
  6. [6]
    Mong A. L., Yang S., Kim D., Journal of Membrane Science, 2017, 543, 133CrossRefGoogle Scholar
  7. [7]
    Bose S., Kuila T., Nguyen T. X. H., Kim N. H., Lau K., Lee J. H., Progress in Polymer Science, 2011, 36(6), 813CrossRefGoogle Scholar
  8. [8]
    Hernan C., Maria L. F., Analia V., Recent Patents on Nanotechnology, 2013, 7(1), 56CrossRefGoogle Scholar
  9. [9]
    Lavoine N., Desloges I., Dufresne A., Bras J., Carbohydrate Polymers, 2012, 90(2), 735CrossRefGoogle Scholar
  10. [10]
    Terbojevich M., Cosani A., Conio G., Ciferri A., Bianchi E., Macromolecules, 1985, 18(4), 640CrossRefGoogle Scholar
  11. [11]
    Terbojevich M., Carraro C., Cosani A., Marsano E., Carbohydrate Research, 1988, 180(1), 73CrossRefGoogle Scholar
  12. [12]
    Edgar K. J., Arnold K. M., Blount W. W., Lawniczak J. E., Lowman D. W., Macromolecules, 1995, 28(12), 4122CrossRefGoogle Scholar
  13. [13]
    Phillips D. M., Drummy L. F., Conrady D. G., Fox D. M., Naik R. R., Stone M. O., Trulove P. C., Long H. C. D., Mantz R. A., Journal of the American Chemical Society, 2004, 126(44), 14350CrossRefGoogle Scholar
  14. [14]
    Yang J. Z., Sun D. P., Li J., Yang X. J., Yu J. W., Hao Q. L., Liu W. M., Liu J. G., Zou Z. G., Gu J., Electrochimica Acta, 2009, 54(26), 6300CrossRefGoogle Scholar
  15. [15]
    Bayer T., Cunning B. V., Selyanchyn R., Nishihara M., Fujikawa S., Sasaki K., Lyth S. M., Chemistry of Materials, 2016, 28(13), 4805CrossRefGoogle Scholar
  16. [16]
    Wei Y. C., Li X. B., Hu Q. X., Ni C. J., Liu B. J., Zhang M. Y., Zhang H. X., Hu W., RSC Adv, 2016, 6(69), 65072CrossRefGoogle Scholar
  17. [17]
    Zhang H., Wu J., Zhang J., He J. S., Macromolecules, 2005, 38(20), 8272CrossRefGoogle Scholar
  18. [18]
    Liu C. F., Sun R. C., Zhang A. P., Ren J. L., Geng Z. C., Polymer Degradation and Stability, 2006, 91(12), 3040CrossRefGoogle Scholar
  19. [19]
    Li Q., Zhou J. P., Zhang L. N., Journal of Polymer Science Part B: Polymer Physics, 2009, 47(11), 1069CrossRefGoogle Scholar
  20. [20]
    Sun P., Li Z., Jin L., Wang S., Yin X. Y., International Journal of Hydrogen Energy, 2017, 42(21), 14572CrossRefGoogle Scholar
  21. [21]
    Jiang Z. Q., Zhao X. S., Hua Y. Z., Manthiram A., Journal of Materials Chemistry, 2012, 22(47), 24862CrossRefGoogle Scholar
  22. [22]
    Naduparambath S., Purushothaman E., Cellulose, 2016, 23(3), 1803CrossRefGoogle Scholar
  23. [23]
    Wang B. L., Cai Z. Z., Zhang N., Zhang B., Qi D., Zhao C. J., Na H., RSC Advances, 2015, 5(1), 536CrossRefGoogle Scholar
  24. [24]
    Azubuike C. P., Odulaja J. O., Okhamafe A. O., Journal of Excipients and Food Chemicals, 2016, 3(3), 1105Google Scholar
  25. [25]
    Kreuer K. D., Rabenau A., Weppner W., Angewandte Chemie International Edition, 1982, 21(3), 208CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Qi Zhao
    • 1
  • Xiaoxiao Liang
    • 1
  • Yingxue You
    • 1
  • Yuliang Wang
    • 1
  • Xinwei Du
    • 1
  • Baijun Liu
    • 2
  • Wei Hu
    • 1
    Email author
  1. 1.College of Chemical EngineeringChangchun University of TechnologyChangchunP. R. China
  2. 2.College of ChemistryJilin UniversityChangchunP. R. China

Personalised recommendations