Advertisement

Simultaneous Photoreduction and Nitrogen Doping of Graphene Oxide for Supercapacitors by Direct Laser Writing

  • Xiuyan Fu
  • Shuai Xu
  • Yang Luo
  • Aiwu LiEmail author
  • Han YangEmail author
Article
  • 1 Downloads

Abstract

Graphene-based supercapacitors have attracted tremendous attention owing to their outstanding electro-chemical performance. In terms of material, nitrogen(N)-doped graphene(NDG) displays enhanced specific capaci- tance and rate performance compared with bare graphene used as a supercapacitor electrode. However, it still remains a challenge to develop a facile and simple method of NDG in cost-effective manner. Here, we used a simple direct laser writing technique to accomplish the simultaneous photoreduction and N-doping of graphene oxide(GO) using urea as a N source. The N content of the resultant reduced N-doped graphene oxide(NGO) reached a maximum value of 6.37%. All reduced NGO(NRGO)-based supercapacitors exhibited a higher specific capacitance than those based on pure reduced GO(RGO). Interestingly, the electrochemical performance of NRGO-based supercapacitors varied with different contents of N species. Therefore, we can control the properties of the obtained NRGOs by adjusting the doping ratios, an important step in developing effective graphene-based energy storage devices.

Keywords

Simultaneous photoreduction and nitrogen-doping Graphene based supercapacitor Direct laser writing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bi Y. G., Feng J., Li Y. F., Zhang X. L., Liu Y. F., Jin Y., Sun H. B., Adv. Mater., 2013, 25(48), 6969CrossRefGoogle Scholar
  2. [2]
    Yin D., Feng J., Ma R., Liu Y. F., Zhang Y. L., Zhang X. L., Bi Y. G., Chen Q. D., Sun H. B., Nat. Commun., 2016, 7, 11573CrossRefGoogle Scholar
  3. [3]
    Wu D., Chen Q. D., Niu L. G., Wang J. N., Wang J., Wang R., Xia H., Sun H. B., Lab on a Chip, 2009, 9(16), 2391CrossRefGoogle Scholar
  4. [4]
    Xu B. B., Zhang Y. L., Xia H., Dong W. F., Ding H., Sun H. B., Lab on a Chip, 2013, 13(9), 1677CrossRefGoogle Scholar
  5. [5]
    Wu D., Wu S. Z., Chen Q. D., Zhao S., Zhang H., Jiao J., Piersol J. A., Wang J. N., Sun H. B., Jiang L., Lab on a Chip, 2011, 11(22), 3873CrossRefGoogle Scholar
  6. [6]
    Wei H. H., Zhang Q., Wang Y., Li Y. J., Fan J. C., Xu Q. J., Min Y. L., Adv. Funct. Mater., 2018, 28(3), 1704440CrossRefGoogle Scholar
  7. [7]
    Zhang X. L., Song J. F., Li X. B., Feng J., Sun H. B., Appl. Phys. Lett., 2012, 101(24), 243901CrossRefGoogle Scholar
  8. [8]
    Guo R., Chen J., Yang B., Liu L., Su L., Shen B., Yan X., Adv. Funct. Mater., 2017, 27(43), 1702394CrossRefGoogle Scholar
  9. [9]
    Yang C., Tang Y., Tian Y., Luo Y., Muhammad F. U. D., Yin X., Que W. X., Adv. Energy Mater., 2018, 8(31), 1802087CrossRefGoogle Scholar
  10. [10]
    Ramesh S., Karuppasamy K., Kim H. S., Kim H. S., Kim J. H., Scientific Reports, 2018, 8, 16543CrossRefGoogle Scholar
  11. [11]
    Feng D., Lei T., Lukatskaya M. R., Park J., Huang Z., Lee M., Shaw L., Chen S., Yakovenko A. A., Kulkarni A., Xiao J., Fredrickson K., Tok J. B., Zou X., Cui Y., Bao Z., Nature Energy, 2018, 3(1), 30CrossRefGoogle Scholar
  12. [12]
    Qi D., Liu Y., Liu Z., Zhang L., Chen X., Adv. Mater., 2017, 29(5), 1602802CrossRefGoogle Scholar
  13. [13]
    Feng L., Wang K., Zhang X., Sun X., Li C., Ge X., Ma Y., Adv. Funct. Mater., 2018, 28(4), 1704463CrossRefGoogle Scholar
  14. [14]
    Guo L., Jiang H. B., Shao R. Q., Zhang Y. L., Xie S. Y., Wang J. N., Li X. B., Jiang F., Chen Q. D., Zhang T., Sun H. B., Carbon, 2012, 50(4), 1667CrossRefGoogle Scholar
  15. [15]
    Liu Y. Z., Li Y. F., Su F. Y., Xie L. J., Kong Q. Q., Li X. M., Gao J. G., Chen C. M., Energy Storage Materials, 2016, 2, 69CrossRefGoogle Scholar
  16. [16]
    Sun H. J., Liu B., Peng, T. J., Zhao X. L., J. Mater. Sci., 2018, 53(18), 13100CrossRefGoogle Scholar
  17. [17]
    Wen Z., Wang X., Mao S., Bo Z., Kim H., Cui S., Lu G., Feng X., Chen J., Adv. Mater., 2012, 24(41), 5610CrossRefGoogle Scholar
  18. [18]
    Han D. D., Zhang Y. L., Jiang H. B., Xia H., Feng J., Chen Q. D., Xu H. L., Sun H. B., Adv. Mater., 2015, 27(2), 332CrossRefGoogle Scholar
  19. [19]
    Wen Y., Huang C., Wang L., Hulicova-Jurcakova D., Chinese Science Bulletin, 2014, 59(18), 2102CrossRefGoogle Scholar
  20. [20]
    Han J., Zhang L. L., Lee S., Oh J., Lee K. S., Potts J. R., Ji J., Zhao X., Ruoff R. S., Park S., ACS Nano, 2013, 7(1), 19CrossRefGoogle Scholar
  21. [21]
    Kumar N. A., Baek J. B., Nanotechnology, 2015, 26, 492001CrossRefGoogle Scholar
  22. [22]
    Jeong H. M., Lee J. W., Shin W. H., Choi Y. J., Shin H. J., Kang J. K., Choi J. W., Nano Lett., 2011, 11(6), 2472CrossRefGoogle Scholar
  23. [23]
    Singh S. K., Dhavale V. M., Boukherroub R., Kurungot S., Szunerits S., Applied Materials Today, 2017, 8, 141CrossRefGoogle Scholar
  24. [24]
    Zou Y., Kinloch I. A., Dryfe R. A. W., J. Mater. Chem. A, 2014, 2(45), 19495CrossRefGoogle Scholar
  25. [25]
    Li X. J., Yu X. X., Liu J. Y., Fan X. D., Zhang K., Cai H. B., Pan N., Wang X. P., Chinese J. Chem. Phys., 2012, 25(3), 325CrossRefGoogle Scholar
  26. [26]
    Yang J., Jo M. R., Kang M., Huh Y. S., Jung H., Kang Y. M., Carbon, 2014, 73, 106CrossRefGoogle Scholar
  27. [27]
    Zhang X. Y., Sun S. H., Sun X. J., Zhao Y. R., Chen L., Yang Y., Lu W., Li D. B., Light: Science & Applications, 2016, 5, E16130CrossRefGoogle Scholar
  28. [28]
    Selvakumar D., Alsalme A., Alswieleh A., Jayavel R., J. Alloys Compounds, 2017, 723, 995CrossRefGoogle Scholar
  29. [29]
    Zhang Y., Wen G., Gao P., Bi S., Tang X., Wang D., Electrochimica Acta, 2016, 221, 167CrossRefGoogle Scholar
  30. [30]
    Gao W., Singh N., Song L., Nat. Nanotechnol., 2011, 6(8), 496CrossRefGoogle Scholar
  31. [31]
    El-Kady M. F., Kaner R. B., Nat. Commun., 2013, 4, 1475CrossRefGoogle Scholar
  32. [32]
    Wu Z. S., Parvez K., Feng X. L., Nat. Commun., 2013, 4, 8Google Scholar
  33. [33]
    Liu S., Xie J., Li H., J. Mater. Chem. A, 2014, 2(42), 18125CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunP. R. China

Personalised recommendations