Improving Elasticity of Conductive Silicone Rubber by Hollow Carbon Black

  • Jihua ZhangEmail author
  • Fengbo Chen
  • Yunfeng Zhao
  • Mingjie Liu


Carbon black-based conductive rubber composites have important impacts on electromagnetic interference(EMI) shielding applications. However, an excessive amount of carbon black in the recipes of these conductive rubbers has caused their weak elasticity. Herein, hollow carbon black(HCB) particles were used to tune the elasticity of conductive rubber composites. Unique hollow morphology produced a better compression recovery of HCB than other solid carbon black, such as acetylene black. When the coupling agent was bonded to HCB, their conductive silicone rubber composites were featured by high stretching resilience, a fast compression recovery and excellent conductivity to satisfy the electromagnetic interference shielding requirements. Importantly, the rubber composites with coupling HCB had extremely low variations of mechanical property, conductivity and EMI shielding effectiveness after thermal accelerated aging tests. It is therefore revealed that the elasticity of HCB and its interfacial chemical coupling with rubber chains both play crucial roles in adjusting the elasticity of conductive rubber to sever long-term EMI protection.


Conductivity Carbon black Elasticity Electromagnetic shielding Silicone rubber 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_9057_MOESM1_ESM.pdf (1 mb)
Improving Elasticity of Conductive Silicone Rubber by Hollow Carbon Black


  1. [1]
    Luo Y. L., Chem. Res. Chinese Universities, 2001, 17(S1), 49Google Scholar
  2. [2]
    Qian M., Sui J., Wang X., Zhu Y., Chem. Res. Chinese Universities, 2019, 35(1), 139CrossRefGoogle Scholar
  3. [3]
    Kwon S. K., Ahn J. M., Kim G. H., Chun C. H., Hwang J. S., Lee J. H., Polym. Eng. Sci., 2002, 42, 2165CrossRefGoogle Scholar
  4. [4]
    Sau K. P., Khastgir D., Chaki T. K., Macromol. Mater. Eng., 1998, 258, 11Google Scholar
  5. [5]
    Das N. C., Chaki T. K., Khastgir D., Chakraborty A., Adv. Polym. Tech., 2001, 20, 226CrossRefGoogle Scholar
  6. [6]
    Tang M., Xing W., Wu J., Huang G., Xiang K., Guo L., Li G., J. Ma-ter. Chem. A, 2015, 3, 5942CrossRefGoogle Scholar
  7. [7]
    Nakaramontri Y., Pichaiyut S., Wisunthorn S., Nakason C., Eur. Polym. J., 2017, 90, 467CrossRefGoogle Scholar
  8. [8]
    Wu D., Lv Q., Feng S., Chen J., Yao X., Carbon, 2015, 95, 380CrossRefGoogle Scholar
  9. [9]
    Dai K., Xu X. B., Li Z. M., Polymer, 2007, 48, 849CrossRefGoogle Scholar
  10. [10]
    Kost J., Narkis M., Foux A., J. Appl. Polym. Sci., 1984, 29, 3937CrossRefGoogle Scholar
  11. [11]
    Kost J., Narkis M., Foux A., Polym. Eng. Sci., 1983, 23, 567CrossRefGoogle Scholar
  12. [12]
    Sethi D., Ram R., Khastgir D., Polym. Int., 2017, 66, 1295CrossRefGoogle Scholar
  13. [13]
    Zhang J., Zhang S., Feng S., Jiang Z., Polym. Int., 2005, 54, 1175CrossRefGoogle Scholar
  14. [14]
    Sohi N. J. S., Rahaman M., Khastgir D., Polym. Compos., 2011, 32, 1148CrossRefGoogle Scholar
  15. [15]
    Al-Ghamdi A. A., Al-Hartomy O. A., Al-Solamy F. R., Dishovsky N., Atanasov N., Compos. Part B: Eng., 2016, 96, 231CrossRefGoogle Scholar
  16. [16]
    Kong J. H., Jang N. S., Kim S. H., Kim J. M., Carbon, 2014, 77, 199CrossRefGoogle Scholar
  17. [17]
    Zhang Y. C., Dai K., Tang J. H., Ji X., Li Z. M., Mater. Lett., 2010, 64, 1430CrossRefGoogle Scholar
  18. [18]
    Wu X., Lu C., Zhang X., Zhou Z., J. Mater. Chem. A, 2015, 3, 13317CrossRefGoogle Scholar
  19. [19]
    Wang L., Ding T., Wang P., Sensor Actuat. A: Phys., 2007, 135, 587CrossRefGoogle Scholar
  20. [20]
    Hu M., Zhang N., Guo Q., Cai X., Zhou S., Yang J., Mater. Design, 2016, 100, 263CrossRefGoogle Scholar
  21. [21]
    Liu H., Zhu L. L., He Y., Cheng B. W., Mater. Design, 2017, 113, 254CrossRefGoogle Scholar
  22. [22]
    Wu J., Dong J., Wang Y., Gond B. K., Polym. Degrad. Stabil., 2017, 135, 43CrossRefGoogle Scholar
  23. [23]
    Zhang J., Ren L., Wang L., Zhao Y., Aerosp. Mater. Technol., 2011, 41, 79Google Scholar
  24. [24]
    Nanda M., Tripathy D. K., J. Appl. Polym. Sci., 2010, 116, 2758Google Scholar
  25. [25]
    Liu J., Lu Y. L., Tian M., Li. F., Shen J, Gao Y., Zhang L., Adv. Funct. Mater., 2013, 23, 1156CrossRefGoogle Scholar
  26. [26]
    Zhang J., Wang L., Zhao Y., Mater. Design, 2013, 50, 322CrossRefGoogle Scholar
  27. [27]
    Liu J., Liu J., Wang S., Huang J., Wu S., Tang Z., Guo B., Zhang L., J. Mater. Chem. A, 2017, 5, 25660CrossRefGoogle Scholar
  28. [28]
    Zhang J., Zao W., Wang L., Zhao Y., Mater. Design, 2013, 52, 896CrossRefGoogle Scholar
  29. [29]
    Hidaka K., Moine L., Collin G., Labarre D., Grossiord J. L., Huang N., Osuga K., Wada S., Laurent A., J. Mech. Behav. Biomed. Mater., 2011, 4, 2161CrossRefGoogle Scholar
  30. [30]
    Kobayashi M., Toda H., Takeuchi A., Uesugi K., Suzuki Y., Mater. Charact., 2012, 69, 52CrossRefGoogle Scholar
  31. [31]
    Mondal S., Ganguly S., Das P., Khastgir D., Das N. C., Compos. Part B: Eng., 2017, 119, 41CrossRefGoogle Scholar
  32. [32]
    Gillen K. T., Bernstein R., Wilson M. H., Polym. Degrad. Stabil., 2005, 87, 257CrossRefGoogle Scholar
  33. [33]
    Maiti A., Gee R. H., Weisgraber T., Chinn S., Maxwell R. S., Polym. Degrad. Stabil., 2008, 93, 2226CrossRefGoogle Scholar
  34. [34]
    Liu J., Li X., Xu L., He T., J. Mater. Eng. Perform., 2017, 26, 1735CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Jihua Zhang
    • 1
    Email author
  • Fengbo Chen
    • 1
  • Yunfeng Zhao
    • 1
  • Mingjie Liu
    • 2
  1. 1.Aerospace Research Institute of Material and Processing TechnologyBeijingP. R. China
  2. 2.Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China

Personalised recommendations