Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 4, pp 604–608 | Cite as

Enantioselective Addition of Allyltrichlorosilane to Bulky-substituted Aldehydes Catalyzed by Axial N,N′-Dioxide Pivalate

  • Jie Wang
  • Shijie Wu
  • Xiaoke Wang
  • Longfei Li
  • Kan Yang
  • Huajie ZhuEmail author
  • Wan Li
  • Li LiuEmail author
Article
  • 16 Downloads

Abstract

Allylation of bulky-substituted aromatic aldehydes with allyltrichlorosilanes were catalyzed by axial biscarboline N,N’-dioxide esters with high enantioselectivities up to 92% e.e. for 1-(4-chlorophenyl)-9-methyl-9H-pyrido[3,4-b]indole-3-carbaldehyde and 90% e.e. for 1-(3-methoxyphenyl)-9-methyl-9H-pyrido[3,4-b]indole-3-carbaldehyde, respectively. Total 22 aldehydes were tested with good yields and enantioselectivities. Catalyst 4f exhibited good catalytic enantioselectivity.

Keywords

Enantioselective allylation Biscarboline N,N′-dioxide pivalate Driving-force Catalytic space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hosomi A., Sakurai H., Tetrahedron Lett., 1976, 16, 1295CrossRefGoogle Scholar
  2. [2]
    Yus M., González-Gómez J. C., Foubelo F., Chem. Rev., 2011, 111, 7774CrossRefGoogle Scholar
  3. [3]
    Cesarotti E., Araneo S., Rimoldi I., Tassi S., J. Mol. Catal. A: Chemical, 2003, 204/205, 221CrossRefGoogle Scholar
  4. [4]
    Denmark S. E., Fu J. P., Chem. Rev., 2003, 103, 2763CrossRefGoogle Scholar
  5. [5]
    Yus M., González-Gómez J. C., Foubelo F., Chem. Rev., 2013, 113, 5595CrossRefGoogle Scholar
  6. [6]
    Denmark S. E., Beutner G. L., Wynn T., Eastgate M. D., J. Am. Chem. Soc., 2005, 127, 3774CrossRefGoogle Scholar
  7. [7]
    Zheng K., Qin B., Liu X., Feng X. M., J. Org. Chem., 2007, 72, 8478CrossRefGoogle Scholar
  8. [8]
    Malkov A. V., Kočovský P., Eur. J. Org. Chem., 2007, 2007, 29CrossRefGoogle Scholar
  9. [9]
    Chelucci G., Murineddub G., Pinnab G. A., Tetrahedron: Asymmetry, 2004, 15, 1373CrossRefGoogle Scholar
  10. [10]
    Nakajima M., Saito M., Uemura M., Hashimoto S., Tetrahedron Lett., 2002, 43, 8827CrossRefGoogle Scholar
  11. [11]
    Nakajima M., Yokota T., Saito M., Hashimoto S., Tetrahedron Lett., 2004, 45, 61CrossRefGoogle Scholar
  12. [12]
    Kina A., Shimada T., Hayash T. I., Adv. Synth. Catal., 2004, 346, 1169CrossRefGoogle Scholar
  13. [13]
    Malkov A. V., Bell M., Orsini M., Pernazza D., Massa A., Herrmann P., Meghani P., Kočovský P., J. Org. Chem., 2003, 68, 9659CrossRefGoogle Scholar
  14. [14]
    Malkov A. V., Dufková L., Farrugia L., Kočovský P., Angew. Chem., 2003, 115, 3802CrossRefGoogle Scholar
  15. [15]
    Malkov A. V., Kysilka O., Edgar M., Kadlčíkov A., Kotora M., Kočovský P., Chem. Eur. J., 2011, 17, 7162CrossRefGoogle Scholar
  16. [16]
    Denmark S. E., Fan Y., Tetrahedron: Asymmetry, 2006, 17, 687CrossRefGoogle Scholar
  17. [17]
    Kadlčíkov A., Hrdina R., Valterová I., Kotora M., Adv. Synth.Catal., 2009, 351, 1279CrossRefGoogle Scholar
  18. [18]
    Vlašan K., Hrdina R., Valterová I., Kotora M., Eur. J. Org. Chem., 2010, 7040Google Scholar
  19. [19]
    Jiao Z. G., Feng X. M., Liu B., Chen F. X., Zhang G. L., Jiang Y. Z., Eur. J. Org. Chem., 2003, 3818Google Scholar
  20. [20]
    Chelucci G., Belmonte N., Benagliab M., Pignataro L., Tetrahedron Lett., 2007, 48, 4037CrossRefGoogle Scholar
  21. [21]
    Boyd D. R., Sharma N. D., Sbircea L., Murphy D., Malone J. F., James S. L. C. Allen C. R., Hamilton J. T. G., Org. Biomol. Chem., 2010, 8, 1081CrossRefGoogle Scholar
  22. [22]
    Keck G. E., Tarbet K. H., Geraci L. S., J. Am. Chem. Soc., 1993, 115, 8467CrossRefGoogle Scholar
  23. [23]
    Hanawa H., Hashimoto T., Maruoka K., J. Am. Chem. Soc., 2003, 125, 1708CrossRefGoogle Scholar
  24. [24]
    Iseki K., Mizuno S., Kuroki Y., Kobayashi Y., Tetrahedron Lett., 1998, 39, 2767CrossRefGoogle Scholar
  25. [25]
    Rauniyar V., Hall D. G., J. Org. Chem. 2009, 74, 4236CrossRefGoogle Scholar
  26. [26]
    Bai B., Shen L., Ren J., Zhu H. J. Adv. Synth. Cat., 2012, 354, 354CrossRefGoogle Scholar
  27. [27]
    Bruce D. R., [R-(R*R*)]-2-(4-Fluorophenyl)-β,δ-dihydroxy-5-(1-methylethyl-3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrole-1-heptanoic Acid, Its Lactone form and Salts Thereof., US5273995, 1993 Google Scholar
  28. [28]
    Sotiriou G. G., Cheng J. W., Ann. Parmacothor., 2009, 34, 1432CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.College of PharmacyHebei UniversityBaodingP. R. China
  2. 2.College of MedicineHebei UniversityBaodingP. R. China
  3. 3.College of ChemistryHebei UniversityBaodingP. R. China

Personalised recommendations