Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 4, pp 549–555 | Cite as

Carboxylate-induced Various Structures of Ni(II) Complexes with Fluorescence Sensing and Bifunctional Electrochemical Properties

  • Xue Lu
  • Guocheng LiuEmail author
  • Xiang Wang
  • Hongyan Lin
  • Xiuli WangEmail author
Article
  • 11 Downloads

Abstract

We synthesized three new Ni(II) coordination polymers [Ni(L)(HIP)(H2O)2]H2O(CP1), [Ni(L)(NIP)]·2H2O(CP2) and [Ni(L)(NDC)(H2O)2](CP3)[L=N,N'-bis(pyridine-3-yl)thiophene-2,5-dicarboxamide, H2HIP=5-hydroxyisophthalic acid, H2NIP=5-nitroisophthalic acid, H2NDC=2,6-naphthalenedicarboxylic acid] by hydrothermal method, which were characterized by means of infrared spectra(IR), TG analyses, PXRD and single-crystal X-ray diffraction. The CP1 is a 1D tubular structure based on [Ni-HIP]2 loops and pairs of L ligands. CP2 is a 2D 3,5-connected architecture, which consists of Ni-L linear chains and (Ni-NIP)2 double chains. CP3 is a 2D network, which features 4-connected topology. Solid-state luminescent behaviours of CP1—CP3 were investigated. The CP1 can detect Fe3+ ions through luminescence quenching. The electrochemical properties of CP1 buk-modified carbon paste electrode(CP1-CPE) has also been investigated, which has bifunctional electrocatalytic activity for oxidation of ascorbic acid and reduction of NO2.

Keywords

Carboxylate-induced Coordination polymer Fluorescent recognition Bifunctional electrocatalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_9015_MOESM1_ESM.pdf (393 kb)
Supplementary material, approximately 2.50 MB.

References

  1. [1]
    Liu X. F., Theil E. C., Acc. Chem. Res., 2005, 38(3), 167CrossRefGoogle Scholar
  2. [2]
    Liu J. Q., Li G. P., Liu W. C., Liu W. C., Li Q. L., Li B. H., Robert W. G., Hou L., Batten S. R., ChemPlusChem., 2016, 81(12), 1299CrossRefGoogle Scholar
  3. [3]
    Yan W., Zhang C., Chen S. G., Han L. J., Zheng H. G., ACS Appl. Mater. Inter., 2017, 9(2), 1629CrossRefGoogle Scholar
  4. [4]
    Dang S., Ma E., Sun Z. M., Zhang H. J., J. Mater. Chem., 2012, 22(33), 16920CrossRefGoogle Scholar
  5. [5]
    Hider R. C., Kong X. L., Dalton Trans., 2013, 42(9), 3220CrossRefGoogle Scholar
  6. [6]
    Carter K. P., Young A. M., Palmer A. E., Chem. Rev., 2014, 114(8), 4564CrossRefGoogle Scholar
  7. [7]
    Wang X. L., Xiong Y., Sha X. T., Liu G. C., Lin H. Y., Cryst. Growth Des., 2017, 17(2), 483CrossRefGoogle Scholar
  8. [8]
    Kitagawa S., Kitaura R., Noro S., Angew. Chem. Int. Edit., 2004, 43(18), 2334CrossRefGoogle Scholar
  9. [9]
    Liu Q., Yu L., Wang Y., Ji Y. Z., Horvat J., Cheng M. L., Jia X. Y., Wang G. X., Inorg. Chem., 2013, 52(6), 2817CrossRefGoogle Scholar
  10. [10]
    Kreno L. E., Leong K., Farha O. K., Allendorf M., van Duyne R. P., Hupp J. T., Chem. Rev., 2012, 112(2), 1105CrossRefGoogle Scholar
  11. [11]
    Horcajada P., Serre C., Maurin G., Ramsahye N. A., Balas, F., Vallet-Regí M., Sebban M., Francis T., Gérard F., J. Am. Chem. Soc., 2008, 130(21), 6774CrossRefGoogle Scholar
  12. [12]
    Chen B. L., Xiang S. C., Qian G. D. Acc. Chem. Res., 2010, 43(8), 1115CrossRefGoogle Scholar
  13. [13]
    Qiao Y., Ma Y. F., Jiang W., Wang X. Y., Guan W. S., Che G. B., Li W. K., Qin F., CrystEngComm., 2018, 20(48), 7782CrossRefGoogle Scholar
  14. [14]
    Chand S., Pal A., Pal S. C., Das M. C., Eur. J. Inorg. Chem., 2018, 2018(24), 2785CrossRefGoogle Scholar
  15. [15]
    Mahesh K., Karpagam S., Sens. Actuators B: Chem., 2017, 251, 9Google Scholar
  16. [16]
    Rao P. C., Mandal S., Inorg. Chem., 2018, 57(19), 11855CrossRefGoogle Scholar
  17. [17]
    Li Z., Li R., Li X. Chem. J. Chinese Universities, 2018, 39(11), 2363Google Scholar
  18. [18]
    Zhang D. C., Xu Q. W., Li X., Chem. J. Chinese Universities, 2018, 39(12), 2611Google Scholar
  19. [19]
    Lee C. H., Huang H. Y., Liu Y. H., Luo T. T., Lee G. H., Peng S. M., Jiang J. C., Chao I., Lu K. L., Inorg. Chem., 2013, 52(7), 3962CrossRefGoogle Scholar
  20. [20]
    Park M. K., Lim K. S., Park J. H., Song J. H., Kang D. W., Lee W. R., Hong C. S., CrystEngComm., 2016, 18(23), 4349CrossRefGoogle Scholar
  21. [21]
    Wang X. L., Wu X. M., Liu G. C., Lin H. Y., Wang X., RSC Adv., 2016, 6(88), 85030CrossRefGoogle Scholar
  22. [22]
    Wang X. L., Chen N. L., Liu G. C., Tian A. X., Sha X. T., Ma K. F., Inorg. Chim. Acta, 2015, 432, 128Google Scholar
  23. [23]
    Wang X. L., Wu X. M., Liu G. C., Li Q. M., Lin H. Y., Wang X., J. Solid State Chem., 2017, 249, 51Google Scholar
  24. [24]
    Mu Y. J., Zhao Y. F., Xu H., Hou H. W., Fan Y. T., J. Mol. Struct., 2009, 935(1), 144CrossRefGoogle Scholar
  25. [25]
    Sarkar M., Biradha K., Cryst. Growth Des., 2006, 6(1), 202CrossRefGoogle Scholar
  26. [26]
    Sheldrick G. M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112Google Scholar
  27. [27]
    Sheldrick G. M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2015, 71, 3Google Scholar
  28. [28]
    Dolensky B., Konvalinka R., Jakubek M., Kral V., J. Mol. Struct., 2013, 124, 1035Google Scholar
  29. [29]
    Hipler F., Fischer R. A., Müller J., J. Chem. Soc. Perkin Trans., 2002, 2(2), 1620CrossRefGoogle Scholar
  30. [30]
    Bellamy L. J., The Infrared Spectra of Complex Molecules, Wiley, New York, 1958 Google Scholar
  31. [31]
    Zhao Y., Wang L., Fan N. N., Han M. L., Yang G. P., Ma L. F., Cryst. Growth Des., 2018, 18(11), 7114CrossRefGoogle Scholar
  32. [32]
    Heine J., Müller-Buschbaum K., Chem. Soc. Rev., 2013, 42(24), 9232CrossRefGoogle Scholar
  33. [33]
    Cui Y. J., Yue Y. F., Qian G. D., Chen B. L., Chem. Rev., 2012, 112(2), 1126CrossRefGoogle Scholar
  34. [34]
    Zou J. P., Peng Q., Wen Z. H., Zeng G. S., Xing Q. J., Guo G. C., Cryst. Growth Des., 2010, 10(6), 2613CrossRefGoogle Scholar
  35. [35]
    Gong Y., Wu T., Lin J. H., CrystEngComm., 2012, 14(10), 3727CrossRefGoogle Scholar
  36. [36]
    Jana A. K., Natarajan S., ChemPlusChem., 2017, 82(8), 1153CrossRefGoogle Scholar
  37. [37]
    Staderini S., Tuci G., D'Angelantonio M., Manoli F., Manet I., Giambastiani G., Rossin A., Chemistry Select., 2016, 6(1), 1123Google Scholar
  38. [38]
    Wang X. L., Ying X., Liu G. C., Lin H. Y., Wang X., Dalton Trans., 2018, 47(29), 9903CrossRefGoogle Scholar
  39. [39]
    Singh A. K., Mukherjee R., Dalton Trans., 2005, (17), 2886Google Scholar
  40. [40]
    Pandey S., Das P. P., Singh A. K., Mukherjee R., Dalton Trans., 2011, 40(40), 10758CrossRefGoogle Scholar
  41. [41]
    Zhang L., Dong S., J. Electroanal. Chem., 2004, 568, 189Google Scholar
  42. [42]
    Lin H. Y., Wang X. L., Hu H. L., Chen B. K., Liu G. C., Solid State Sciences, 2009, 11 (3), 643Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.Liaoning Province Silicon Materials Engineering Technology Research Centre, Department of ChemistryBohai UniversityJinzhouP. R. China

Personalised recommendations