Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 4, pp 667–673 | Cite as

Pd/TiO2 Nanospheres with Three-dimensional Hyperstructure for Enhanced Photodegradation of Organic Dye

  • Huan Wang
  • Liguang Xiao
  • Chao Wang
  • Bin Lin
  • Sa Lyu
  • Xuefeng Chu
  • Yaodan Chi
  • Xiaotian YangEmail author
  • Xinyan Wang
Article
  • 10 Downloads

Abstract

Pd/TiO2 nanospheres assembled from nanorods with three-dimensional hyperstructure for enhanced photodegradation of organic dye was prepared by a sample solvothermal method. Further, it was used for degradation of methyl orange(MO) under the illumination of visible-light(simulated). The results show that Pd/TiO2 with 2%(mass fraction) Pd exhibits the noticeable activity in photodegrading of MO. The detailed analysis shows that this enhancement is attributed to the reduction of the rate of electron-hole recombination and surface plasmon resonance of Pd. The high activity and good stability of the obtained Pd/TiO2 nanospheres make it a promising photocatalyst for solving the environmental pollution problems.

Keywords

TiO2 Pd Photocatalytic degradation Surface plasmon resonance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_9014_MOESM1_ESM.pdf (158 kb)
Pd/TiO2 nanospheres with three-dimensional hyperstructure for enhanced photodegradation of organic dye

References

  1. [1]
    Daghrir R., Drogui P., Robert D., Industrial & Engineering Chemistry Research, 2013, 52, 3581CrossRefGoogle Scholar
  2. [2]
    Pelaez M., Nolan N. T., Pillai S. C., Seery M. K., Falaras P., Kontos A. G., Dunlop P. S. M., Hamilton J. W. J., Byrne J. A., OShea K., Mohammad H., Dionysiou D. D., Applied Catalysis B: Environmental, 2012, 52, 331CrossRefGoogle Scholar
  3. [3]
    Seh Z. W., Liu S., Low M., Zhang S. Y., Liu Z., Mlayah A., Han M. Y., Adv. Mater., 2012, 52, 2310CrossRefGoogle Scholar
  4. [4]
    Jiang B., Hou Z., Tian C., Zhou W., Zhang X., Wu A., Tian G., Pan K., Ren Z., Fu H., CrystEngComm, 2013, 52, 5821CrossRefGoogle Scholar
  5. [5]
    Kobosko S. M., Jara D. H., Kamat P. V., ACS Appl. Mater. Interfaces, 2017, 52, 33379CrossRefGoogle Scholar
  6. [6]
    Duan H., Wang Z., Cui L., Lin B., Zhou Y., Industrial & Engineering Chemistry Research, 2018, 52, 12358CrossRefGoogle Scholar
  7. [7]
    Zhang C., Zhou Y., Bao J., Sheng X., Fang J., Zhao S., Zhang Y., Chen W., ACS Applied Materials & Interfaces, 2018, 52, 18796CrossRefGoogle Scholar
  8. [8]
    Deng Q. R., Xia X. H., Guo M. L., Gao Y., Shao G., Materials Letters, 2011, 52, 2051CrossRefGoogle Scholar
  9. [9]
    Ayati A., Ahmadpour A., Bamoharram F. F., Tanhaei B., Manttari M., Sillanpaa M., Chemosphere, 2014, 52, 163CrossRefGoogle Scholar
  10. [10]
    Gupta B., Melvin A. A., Matthews T., Dash S., Tyagi A. K., Renewable and Sustainable Energy Reviews, 2016, 52, 1366CrossRefGoogle Scholar
  11. [11]
    Wang X., Wu T., Wang H., Su X., Materials Research Bulletin, 2016, 52, 423CrossRefGoogle Scholar
  12. [12]
    Zhang Q., Ye J., Tian P., Lu X., Lin Y., Zhao Q., Ning G., RSC Advances, 2013, 52, 9739CrossRefGoogle Scholar
  13. [13]
    Lacerda A. M., Larrosa I., Dunn S., Nanoscale, 2015, 52, 12331CrossRefGoogle Scholar
  14. [14]
    Kelly K. L., Coronado E., Zhao L. L., Schatz George C., J. Phys. Chem. B, 2003, 52, 66Google Scholar
  15. [15]
    Leong K. H., Chu H. Y., Ibrahim S., Saravanan P., Beilstein J. Nano-technol., 2015, 52, 428CrossRefGoogle Scholar
  16. [16]
    Li H., Yu H., Sun L., Zhai J., Han X., Nanoscale, 2015, 52, 1610CrossRefGoogle Scholar
  17. [17]
    Bai X., Lv L., Zhang X., Hua Z., Journal of Colloid and Interface Science, 2016, 52, 1Google Scholar
  18. [18]
    Xu Y., Zhang C., Zhang L., Zhang X., Yao H., Shi J., Energy & Environmental Science, 2016, 52, 2410CrossRefGoogle Scholar
  19. [19]
    Tan D., Zhang J., Shi J., Li S., Zhang B., Tan X., Zhang F., Liu L., Shao D., Han B., ACS Applied Materials & Interfaces, 2018, 52, 24516CrossRefGoogle Scholar
  20. [20]
    Zhou W., Guan Y., Wang D., Zhang X., Liu D., Jiang H., Wang J., Liu X., Liu H., Chen S., Chemistry: An Asian Journal, 2014, 52, 1648Google Scholar
  21. [21]
    Yang W., Xiong Y., Zou L., Zou Z., Li D., Mi Q., Wang Y., Yang H., Nanoscale Research Letters, 2016, 11Google Scholar
  22. [22]
    Yu L., Li D., Catalysis Science & Technology, 2017, 52, 635CrossRefGoogle Scholar
  23. [23]
    Xu C., Huang W., Li Z., Deng B., Zhang Y., Ni M., Cen K., ACS Catalysis, 2018, 52, 6582CrossRefGoogle Scholar
  24. [24]
    Li H., Gan S., Wang H., Han D., Niu L., Adv. Mater., 2015, 52, 6906CrossRefGoogle Scholar
  25. [25]
    Shah M. W., Zhu Y., Fan X., Zhao J., Li Y., Asim S., Wang C., Scientific Reports, 2015, 52, 15804CrossRefGoogle Scholar
  26. [26]
    Zuo F., Wang L., Wu T., Zhang Z., Borchardt D., Feng P., J. Am. Chem. Soc., 2010, 52, 11856CrossRefGoogle Scholar
  27. [27]
    Li H., Wu T., Cai B., Ma W., Sun Y., Gan S., Han D., Niu L., Applied Catalysis B: Environmental, 2015, 52, 344CrossRefGoogle Scholar
  28. [28]
    Khachatryan L., Vejerano E., Lomnicki S., Dellinger B., Environ. Sci. Technol., 2011, 52, 8559CrossRefGoogle Scholar
  29. [29]
    Fenoglio I., Greco G., Livraghi S., Fubini B., Chem. Eur. J., 2009, 52, 4614CrossRefGoogle Scholar
  30. [30]
    Zhang R., Wang H., Tang S., Liu C., Dong F., Yue H., Liang B., ACS Catalysis, 2018, 52, 9280CrossRefGoogle Scholar
  31. [31]
    Fan Y., Ma W., Han D., Gan S., Dong X., Niu L., Adv. Mater., 2015, 52, 3767CrossRefGoogle Scholar
  32. [32]
    Wang X., Wang H., Yang X., Su X., Chem. Res. Chinese Universities, 2016, 32(4), 661CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Huan Wang
    • 1
    • 2
  • Liguang Xiao
    • 2
  • Chao Wang
    • 1
  • Bin Lin
    • 1
  • Sa Lyu
    • 1
  • Xuefeng Chu
    • 1
  • Yaodan Chi
    • 1
  • Xiaotian Yang
    • 1
    Email author
  • Xinyan Wang
    • 3
  1. 1.Jilin Provincial Key Laboratory of Architectural Electricity & Comprehensive Energy SavingJilin Jianzhu UniversityChangchunP. R. China
  2. 2.Department of Materials ScienceJilin Jianzhu UniversityChangchunP. R. China
  3. 3.State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China

Personalised recommendations