Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 4, pp 708–713 | Cite as

Discovery and Characterization of a Novel Method for Effective Improvement of Cyclodextrin Yield and Product Specificity

  • Jinghan Hua
  • Hongbin Zhang
  • Hao Wu
  • Jiadong Wang
  • Xueqin Hu
  • Jingwen YangEmail author
Article
  • 31 Downloads

Abstract

Cyclodextrins(CDs) are widely used in food, pharmaceuticals, drug delivery, and chemical industries and in agriculture and environmental engineering. To improve the yield and selectivity of CDs, this work presented a facile, scalable and efficient enzymatic synthesis of β-CD from starch using β-cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) from Bacillus cereus. First, we found that the pretreatment of starch dramatically influenced CDs yield that was related to the structure and molecular weight of the substrate starch. Second, alcohol solvents influenced the yield and product selectivity of CDs; tertiary alcohols enhanced CDs yield(from 54.95% to 68.21%) and secondary alcohols increased the product selectivity(β-CD/γ-CD changed from 6.25 to 8.05). Fluorescence quenching analysis showed that the binding constants and entropy of the solvents influenced the yield and product selectivity, respectively. In conclusion, the results demonstrate that this study provides a promising method for the industrial production of β-CD.

Keywords

β-Cyclodextrin glycosyltransferase Alcohol solvent Bacillus cereus Cyclodextrin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_8406_MOESM1_ESM.pdf (346 kb)
Discovery and Characterization of a Novel Method for Effective Improvement of Cyclodextrin Yield and Product Specificity

References

  1. [1]
    Shelley H., Babu R. J., J. Pharm. Sci., 2018, 107, 1741CrossRefGoogle Scholar
  2. [2]
    Kurkov S. V., Loftsson T., International Journal of Pharmaceutics, 2013, 453, 167CrossRefGoogle Scholar
  3. [3]
    Li Z., Chen S., Gu Z., Trends Food Sci. Tech., 2014, 35, 151CrossRefGoogle Scholar
  4. [4]
    Pishtiyski I., Zhekova B., World J. Microb. Biot., 2006, 22, 109CrossRefGoogle Scholar
  5. [5]
    Li Z. F., Huang M., International Journal of Biological Macromolecules, 2016, 83, 111CrossRefGoogle Scholar
  6. [6]
    Han R. Z., Li J. H., Biotechnology Advances, 2014, 32, 415CrossRefGoogle Scholar
  7. [7]
    Van B. A., Uitdehaag J. C., Biochim. Biophys. Acta, 2000, 1543, 336CrossRefGoogle Scholar
  8. [8]
    Atanasova N., Kitayska T., Process Biochemistry, 2011, 46, 116CrossRefGoogle Scholar
  9. [9]
    Li C. M., Li W. W., Food Chemistry, 2014, 164, 17CrossRefGoogle Scholar
  10. [10]
    Li Z., Wang M., Appl. Microbiol. Biotechnol., 2007, 77, 245CrossRefGoogle Scholar
  11. [11]
    Szente L., Singhal A., Molecules, 2018, 23, 119CrossRefGoogle Scholar
  12. [12]
    Chen S. D., Li Z. F., International Journal of Biological Macromo-lecules, 2018, 115, 1194CrossRefGoogle Scholar
  13. [13]
    Tesfai B. T., Wu D., Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 77, 147CrossRefGoogle Scholar
  14. [14]
    Tomita K., Tanak T., Journal of Fermentation & Bioengineering, 1990, 70, 190CrossRefGoogle Scholar
  15. [15]
    Blackwood A. D., Bucke C., Enzyme & Microbial Technology, 2000, 27, 704CrossRefGoogle Scholar
  16. [16]
    Chen S., Wu H., New Journal of Chemistry, 2018, 42, 6274CrossRefGoogle Scholar
  17. [17]
    Li Q. P., Wang C., International Journal of Biological Macromolecules, 2017, 95, 696CrossRefGoogle Scholar
  18. [18]
    Sakinah A. M., Ismail A. F., Desalination, 2009, 239, 317CrossRefGoogle Scholar
  19. [19]
    Wu D., Chen S., Appl. Biochem. Biotech., 2012, 167, 1954CrossRefGoogle Scholar
  20. [20]
    Komulainen S., Verlackt C., Carbohydrate Polymers, 2013, 93, 73CrossRefGoogle Scholar
  21. [21]
    Yang X., Li Z. Y., Chem. Eng. J., 2019, 367, 295CrossRefGoogle Scholar
  22. [22]
    Goh K. M., Mahadi N. M., Journal of Molecular Catalysis B: Enzymatic, 2007, 49, 118CrossRefGoogle Scholar
  23. [23]
    Pimentel T. A., Duraes J. A., Journal of Materials Science, 2007, 42, 7530CrossRefGoogle Scholar
  24. [24]
    Yang Z. C., Zheng G. U., Journal of Food Science & Biotechnology, 2009, 31, 17Google Scholar
  25. [25]
    Bovetto L. J., Backer D. P., Biotechnol. Appl. Biochem., 1992, 15, 48CrossRefGoogle Scholar
  26. [26]
    Qiu C., Wang J., Carbohydrate Polymers, 2018, 182, 75CrossRefGoogle Scholar
  27. [27]
    Wang L., Wu D., Food Chemistry, 2013, 141, 3072CrossRefGoogle Scholar
  28. [28]
    Sohn C. B., Kim S. A., Journal of the Korean Society of Food Science & Nutrition, 1997, 26, 5610Google Scholar
  29. [29]
    Gawande B. N., Patkar A. Y., Biotechnol. Bioeng., 1999, 64, 168CrossRefGoogle Scholar
  30. [30]
    Sun L., Zhou D. S., International Journal of Pharmaceutics, 2015, 478, 308CrossRefGoogle Scholar
  31. [31]
    Hall W., Saunders J. B., Addiction, 1993, 88, 1627CrossRefGoogle Scholar
  32. [32]
    Chapman O. L., King R. W., J. Am. Chem. Soc., 1964, 86, 1256CrossRefGoogle Scholar
  33. [33]
    Vasudevan K. V., Peterson M. L., J. Pharm. Sci., 2018, 107, 1489CrossRefGoogle Scholar
  34. [34]
    Rorrer J., Pindi S., Chem. Sus. Chem., 2018, 11, 3104CrossRefGoogle Scholar
  35. [35]
    Li R., Perez B., Applied Microbiology and Biotechnology, 2015, 99, 9625CrossRefGoogle Scholar
  36. [36]
    Ward L. D., Methods Enzymol., 1985, 117, 400CrossRefGoogle Scholar
  37. [37]
    Yang J. W., Gao R. J., Food Chemistry, 2018, 240, 422CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Jinghan Hua
    • 1
  • Hongbin Zhang
    • 1
  • Hao Wu
    • 1
  • Jiadong Wang
    • 1
  • Xueqin Hu
    • 1
  • Jingwen Yang
    • 1
    Email author
  1. 1.Department of Pharmaceutical Science and Engineering, School of Food and Biological EngineeringHefei University of TechnologyHefeiP. R. China

Personalised recommendations