Nanopore-based DNA Supersandwich Structure for Detection of Streptavidin

  • Yujuan Qiao
  • Yue Qian
  • Mengfei Liu
  • Nannan LiuEmail author
  • Xingxing TangEmail author


Natural and synthetic nanopores are increasingly popular tools in biosensors. In this work, the DNA su-persandwich structure, which was made from two specially designed probes has been used to be fabricated in solid nanopores. Integrating the idea of affinity between streptavidin and biotin, the DNA supersandwich structure with biotins was successfully constructed for streptavidin detection, and the limitation of detection was found to be 10 fmol/L. This nanodevice allows specific, sensitive and versatile detection of diverse analytes with easy operations, thus we believe that it could be developed to detect some disease-related molecular targets and play a considerable role in biotechnology.


DNA supersandwich structure Streptavidin Detection Solid-nanopore 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_8378_MOESM1_ESM.pdf (725 kb)
Nanopore-based DNA Supersandwich Structure for detection of Streptavidin


  1. [1]
    Lee K., Lee H., Lee S. H., Kim H. M., Kim K. B., Kim S. J., Nanos-cale, 2017, 9, 18012CrossRefGoogle Scholar
  2. [2]
    Labib M., Sargent E. H., Kelley S. O., Chem. Rev., 2016, 116, 9001CrossRefGoogle Scholar
  3. [3]
    Kwak D. K., Chae H., Lee M. K., Ha J. H., Goyal G., Kim M. J., Kim K. B., Chi S. W., Angew. Chem. Int. Ed., 2016, 55, 5713CrossRefGoogle Scholar
  4. [4]
    Masson J. F., ACS Sensors, 2017, 2, 16CrossRefGoogle Scholar
  5. [5]
    Chaturvedi P., Rodriguez S. D., Vlassiouk I., Hansen I. A., Smirnov S. N., ACS Sensors, 2016, 1, 488CrossRefGoogle Scholar
  6. [6]
    Guzel F. D., Avci H., IEEE Sens. J., 2018, 18, 2641CrossRefGoogle Scholar
  7. [7]
    Yang C., Liu L., Zeng T., Yang D. W., Yao Z. Y., Zhao Y. L., Wu H. C., Anal. Chem., 2013, 85, 7302CrossRefGoogle Scholar
  8. [8]
    Sheng Y. Y., You Y., Cao Z., Liu L., Wu H. C., Analyst, 2018, 143, 2411CrossRefGoogle Scholar
  9. [9]
    Meervelt V. V., Soskine M., Singh S., Schuurman-Wolters G. K., Wijma H. J., Poolman B., Maglia G., J. Am. Chem. Soc., 2017, 139, 18640CrossRefGoogle Scholar
  10. [10]
    Guo B. Y., Sheng Y. Y., Zhou K., Liu Q. S., Liu L., Wu H. C., Angew. Chem. Int. Ed., 2018, 57, 3602CrossRefGoogle Scholar
  11. [11]
    Hu Z. L., Li Z. Y., Ying Y. L., Zhang J. J., Cao C., Long Y. T., Tian H., Anal. Chem., 2018, 90, 4268CrossRefGoogle Scholar
  12. [12]
    Cao C., Ying Y. L., Hu Z. L., Liao D. F., Tian H., Long Y. T., Nat. Nanotechnol., 2016, 11, 713CrossRefGoogle Scholar
  13. [13]
    Nasir S., Ali M., Ensinger W., Nanotechnology, 2012, 23, 1CrossRefGoogle Scholar
  14. [14]
    Sexton L. T., Horne L. P., Sherrill S. A., Bishop G. W., Baker L. A., Martin C. R., J. Am. Chem. Soc., 2007, 129, 13144CrossRefGoogle Scholar
  15. [15]
    Kaya D., Dinler A., San N., Kececi K., Electrochim. Acta, 2016, 202, 157CrossRefGoogle Scholar
  16. [16]
    Yao H. J., Zeng J., Zhai P. F., Loa Z. Z., Cheng Y. X., Liu J. D., Mo D., Duan J. L., Wang L. X., Sun Y. M., Liu J., ACS Appl. Mat. Inter-faces, 2017, 9, 11000CrossRefGoogle Scholar
  17. [17]
    Buchsbaum S. F., Nguyen G., Howorka S., Siwy Z. S., J. Am. Chem. Soc., 2014, 136, 9902CrossRefGoogle Scholar
  18. [18]
    Kim S. W., Lee J. S., Lee S. W., Kang B. H., Kwon J. B., Kim O. S., Kim J. S., Kim E. S., Kwon D. H., Kang S. W., Sensors-Basel, 2017, 17, 856CrossRefGoogle Scholar
  19. [19]
    Liu L., Zhu L. Z., Analyst, 2015, 140, 4895CrossRefGoogle Scholar
  20. [20]
    Kececi K., San N., Kaya D., Talanta, 2015, 144, 268CrossRefGoogle Scholar
  21. [21]
    Wanunu M., Meller A., Nano Lett., 2007, 7, 1580CrossRefGoogle Scholar
  22. [22]
    Ying Y. L., Zhang J. J., Meng F. N., Cao C., Yao X. Y., Willner I., Tian H., Long Y. T., Sci. Rep.-Uk, 2013, 3, 1662CrossRefGoogle Scholar
  23. [23]
    Tang Z. P., Lu B., Zhao Q., Wang J. J., Luo K. F., Yu D. P., Small, 2014, 10, 4332Google Scholar
  24. [24]
    Wanunu M., Dadosh T., Ray V., Jin J. M., McReynolds L., Drndic M., Nat. Nanotechnol., 2010, 5, 807CrossRefGoogle Scholar
  25. [25]
    Venkatesan B. M., Bashir R., Nat. Nanotechnol., 2011, 6, 615CrossRefGoogle Scholar
  26. [26]
    Rosen C. B., Rodriguez-Larrea D., Bayley H., Nat. Biotechnol., 2014, 32, 179CrossRefGoogle Scholar
  27. [27]
    Hu R., Diao J. J., Li J., Tang Z. P., Li X. Q., Leitz J., Long J. G., Liu J. K., Yu D. P., Zhao Q., Sci. Rep., 2016, 6, 20776CrossRefGoogle Scholar
  28. [28]
    Haque F., Li J. H., Wu H. C., Liang X. J., Guo P. X., Nano Today, 2013, 8, 56CrossRefGoogle Scholar
  29. [29]
    Wen S., Zeng T., Liu L., Zhao K., Zhao Y. L., Liu X. J., Wu H. C., J. Am. Chem. Soc., 2011, 133, 18312CrossRefGoogle Scholar
  30. [30]
    Tsutsui M., Tanaka M., Marui T., Yokota K., Yoshida T., Arima A., Tonomura W., Taniguchi M., Washio T., Okochi M., Kawai T., Anal. Chem., 2018, 90, 1511CrossRefGoogle Scholar
  31. [31]
    Yang F., Zuo X. L., Li Z. H., Deng W. P., Shi J. Y., Zhang G. J., Huang Q., Song S. P., Fan C. H., Adv. Mater., 2014, 26, 4671CrossRefGoogle Scholar
  32. [32]
    Ge Z. L., Pei H., Wang L. H., Song S. P., Fan C. H., Sci. Chi. Chem., 2011, 54, 1273CrossRefGoogle Scholar
  33. [33]
    Wei Y. P., Liu X. P., Mao C. J., Niu H. L., Song J. M., Jin B. K., Bio-sens Bioelectron, 2018, 103, 99CrossRefGoogle Scholar
  34. [34]
    Wang J., Aki M., Onoshima D., Arinaga K., Kaji N., Tokeshi M., Fu-jita S., Yokoyama N., Baba Y., Biosens Bioelectron, 2014, 51, 280CrossRefGoogle Scholar
  35. [35]
    Yu Y. J., Zhou Y., Li Q. S., Yang Y., Shi J. G., Li M. Y., Yao W. G., Wang J. N., Dong W. F., Qi Z. M., Chem. Res. Chinese Universities, 2013, 29(6), 1219CrossRefGoogle Scholar
  36. [36]
    Yao G., Li J., Chao J., Pei H., Liu H. J., Zhao Y., Shi J. Y., Huang Q., Wang L. H., Huang W., Fan C. H., Angew. Chem. Int. Ed., 2015, 54, 2966CrossRefGoogle Scholar
  37. [37]
    Wei R. S., Gatterdam V., Wieneke R., Tampe R., Rant U., Nat. Na-notechnol., 2012, 7, 257CrossRefGoogle Scholar
  38. [38]
    Liu N. N., Jiang Y. N., Zhou Y. H., Xia F., Guo W., Jiang L., Angew. Chem. Int. Ed., 2013, 52, 2007CrossRefGoogle Scholar
  39. [39]
    Wei R. S., Tampe R., Rant U., Biophys. J., 2012, 102, 429CrossRefGoogle Scholar
  40. [40]
    Zuo X. L., Xia F., Xiao Y., Plaxco K. W., J. Am. Chem. Soc., 2010, 132, 1816CrossRefGoogle Scholar
  41. [41]
    Xia F., Zuo X. L., Yang R. Q., Xiao Y., Kang D., Vallee-Belisle A., Gong X., Yuen J. D., Hsu B. B. Y., Heeger A. J., Plaxco K. W., Proc. Natl. Acad. Sci. USA, 2010, 107, 10837CrossRefGoogle Scholar
  42. [42]
    Han A., Creus M., Schurmann G., Linder V., Ward T. R., de Rooij N. F., Staufer U., Anal. Chem., 2008, 80, 4651CrossRefGoogle Scholar
  43. [43]
    Liu N. N. Yang Z. K., Lou X. D., Wei B. M., Zhang J. J., Gao P. C., Hou R. Z., Xia F., Aanal. Chem., 2015, 87, 4037CrossRefGoogle Scholar
  44. [44]
    Hou X., Guo W., Xia F., Nie F. Q., Dong H., Tian Y., Wen L. P., Wang L., Cao L. X., Yang Y., Xue J. M., Song Y. L., Wang Y. G., Liu D. S., Jiang L., J. Am. Chem. Soc., 2009, 131, 7800CrossRefGoogle Scholar
  45. [45]
    Guo W., Cao L. X., Xia J. C., Nie F. Q., Ma W., Xue J. M., Song Y. L., Zhu D. B., Wang Y. G., Jiang L., Adv. Funct. Mater., 2010, 20, 1339CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials EngineeringWenzhou UniversityWenzhouP. R. China
  2. 2.Department of Materials EngineeringZhejiang Industry & Trade Vocational CollegeWenzhouP. R. China

Personalised recommendations