Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 4, pp 592–597 | Cite as

POMs as Active Center for Sensitively Electrochemical Detection of Bisphenol A and Acetaminophen

  • Pengfei Dong
  • Na LiEmail author
  • Haiyan Zhao
  • Min Cui
  • Cong Zhang
  • Hongyan Han
  • Jujie RenEmail author
Article
  • 32 Downloads

Abstract

A new type of electrochemical sensor based on multi-walled carbon nanotubes(MWCNTs), K2H4SiW11CuO39·6H2O(SiW11Cu) and gold nanoparticles(AuNPs) was prepared for the simultaneous detection of bisphenol A and acetaminophen. Differential pulse voltammetry(DPV), cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS) were used for electrochemical characterization, and Fourier transform infrared spectroscopy(FTIR) was used to characterize the structure of polyoxometalates. Electrochemical experimental results show that the composite modified electrodes have good electrochemical activity as well as current response values of bisphenol A and acetaminophen when pH=7.0. At the same time, the modified electrode exhibits good stability and reproduction, and has good anti-interference ability to other substances. In practical application, the sensor obtained satisfactory results.

Keywords

Polyoxometalate Gold nanoparticles Electrochemical sensor Bisphenol A Acetaminophen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_8370_MOESM1_ESM.pdf (414 kb)
POMs as Active Center for Sensitively Electrochemical Detection of Bisphenol A and Acetaminophen

References

  1. [1]
    Ahmad J., Hepatology and Transplant Hepatology, A Case Based Approach, Springer, Berlin, 2010 Google Scholar
  2. [2]
    Rochester J. R., Reprod. Toxicol., 2013, 42, 132CrossRefGoogle Scholar
  3. [3]
    Wang Y., Liu G., Hou X., Huang Y., Li C., Wu K., Microchim. Acta, 2016, 183, 689CrossRefGoogle Scholar
  4. [4]
    Schecter A., Malik N., Haffner D., Smith S., Harris T. R., Paepke O., Birnbaum L., Environ. Sci. Technol., 2010, 44, 9425CrossRefGoogle Scholar
  5. [5]
    Zimmers S. M., Browne E. P., O’ Keefe P. W., Anderton D. L., Kramer L., Reckhow D. A., Arcaro K. F., Chemosphere, 2014, 104, 237CrossRefGoogle Scholar
  6. [6]
    Knochen M., Giglio J., Reis B. F., J. Pharm. Biomed. Anal., 2003, 33, 191CrossRefGoogle Scholar
  7. [7]
    Capella-Peiro M. E., Bose D., Rubert M. F., Esteve-Romero J., J. Chromatogr. B, 2006, 839, 95CrossRefGoogle Scholar
  8. [8]
    Murtaza G., Khan S. A., Shabbir A., Mahmood A., Bin Asad M. H. H., Falsoom F., Malik N. S., Hussain I., Sci. Res. Essays, 2011, 6, 417Google Scholar
  9. [9]
    Dewani A. P., Dabhade S. M., Bakal R. L., Gadewar C. K., Chande- war A. V., Patra S., Arab. J. Chem., 2015, 8, 591CrossRefGoogle Scholar
  10. [10]
    Kong X. Y., Wang Y. Y., Zhang Q. Q., Zhang T. R., Teng Q. Q., Wang L., Wang H., Zhang Y. F., Journal of Colloid & Interface Science, 2017, 505, 615CrossRefGoogle Scholar
  11. [11]
    Rebocho S., Cordas C. M., Viveiros R., Casimiro T., Journal of Supercritical Fluids, 2018, 135, 98CrossRefGoogle Scholar
  12. [12]
    Yang Q., Wu X., Peng H., Fu L., Li J., Xiong H., Chen L., Talanta, 2017, 176, 595CrossRefGoogle Scholar
  13. [13]
    Yang L., Chen Y., Shen Y., Yang M., Li X., Han X., Jiang X., Zhao B., Talanta, 2018, 179, 37CrossRefGoogle Scholar
  14. [14]
    Yang Y., Zhang H., Huang C., Jia N., Sensors & Actuators B: Chem., 2016, 235, 408CrossRefGoogle Scholar
  15. [15]
    Messaoud N. B., Ghica M. E., Dridi C., Ali M. B., Brett C. M. A., Sensors & Actuators B Chem., 2017, 253, 513CrossRefGoogle Scholar
  16. [16]
    Zhang J., Ting B. P., Yan Y. T., Ying J. Y., Chem. Mater, 2011, 23, 4688CrossRefGoogle Scholar
  17. [17]
    Song Y. F., Tsunashima R., Chem. Soc. Rev., 2012, 41, 7384CrossRefGoogle Scholar
  18. [18]
    Chen X. L., Souvanhthong B., Wang H., Applied Catalysis B: Environmental, 2013, 138-139, 161CrossRefGoogle Scholar
  19. [19]
    Zhou W. H., Li N., Cao M. H., Materials Letters, 2013, 99, 68CrossRefGoogle Scholar
  20. [20]
    Jin G., Wang S. M., Chen W. L., J. Mater. Chem. A, 2013, 1, 6727CrossRefGoogle Scholar
  21. [21]
    Palilis L. C., Vasilopoulou M., Douvas A. M., Solar Energy Materials & Solar Cells, 2013, 114, 205CrossRefGoogle Scholar
  22. [22]
    Kannan P., John S. A., Anal. Chim. Acta, 2010, 663, 158CrossRefGoogle Scholar
  23. [23]
    Zeng S., Yong K. T., Roy I., Dinh X. Q., Yu X., Luan F., Plasmonics, 2011, 6, 491CrossRefGoogle Scholar
  24. [24]
    Huang K. J., Liu Y. J., Liu Y. M., Wang L. L., J. Hazard. Mater., 2014, 276, 207CrossRefGoogle Scholar
  25. [25]
    Daniel M. C., Astruc D., Chem. Rev., 2004, 104, 293CrossRefGoogle Scholar
  26. [26]
    Li N., Huang R. D.. Journal of Solid State Chemistry, 2016, 233, 320CrossRefGoogle Scholar
  27. [27]
    Cai H. X., Wu X. F., Wu Q.Y., Cao F. H., Yan W. F., RSC Adv., 2016, 6, 84689CrossRefGoogle Scholar
  28. [28]
    Tang S. P., Wu W. F., Fu Z. H., Zou S., Liu Y. C., Zhao H. H., Kirk S. R., Yin D. L., Chem. Cat. Chem., 2015, 7, 2637Google Scholar
  29. [29]
    Teng D., Wang Q., Li N., Zhao H. Y., Huang R. D., Journal of Molecular Science, 2019, 35, 148Google Scholar
  30. [30]
    Han Z. B., Wang E. B., Luan G. Y., Hu C. W., Chem. Res. Chinese Universities, 2001, 17(4), 356Google Scholar
  31. [31]
    Belin T., Epron F., Materials Science & Engineering B(Solid-State Materials for Advanced Technology), 2005, 119, 105CrossRefGoogle Scholar
  32. [32]
    Chen L., Tian L., Liu L., Tian X. F., Song W. B., Xua H. D., Wang X. H., Sensors Actuat. B: Chem., 2005, 110, 271CrossRefGoogle Scholar
  33. [33]
    Yang Y. Y., Zhang H., Huang C. S., Jia N. Q., Sensors and Actuators B, 2016, 235, 408CrossRefGoogle Scholar
  34. [34]
    Lin Y. Q., Liu K. Y., Liu C. Y., Yin L., Kang Q., Li L. B., Li B., Elec-trochimica Acta, 2014, 133, 492CrossRefGoogle Scholar
  35. [35]
    Qin W., Liu X., Chena H., Yanga J., Anal. Methods, 2014, 6, 5734CrossRefGoogle Scholar
  36. [36]
    Zhang L., Wen Y. P., Yao Y. Y., Wang Z. F., Duan X. M., Xu J. K., Chin. Chem. Lett., 2014, 25, 517CrossRefGoogle Scholar
  37. [37]
    Hasanpour F., Taei M., Tahmasebi S., Journal of Food & Drug Analysis, 2018, 26, 879CrossRefGoogle Scholar
  38. [38]
    Huang H., Li Y., Liu J., Tong J., Su X., Food Chem., 2015, 185, 233CrossRefGoogle Scholar
  39. [39]
    Cao F., Dong Q. C., Li C. L., Chen J., Sensors & Actuators B: Chem., 2018, 256, 143CrossRefGoogle Scholar
  40. [40]
    Baghayeri M., Namadchian M., Electrochim. Acta, 2013, 108, 22CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.College of ScienceHebei University of Science and TechnologyShijiazhuangP. R. China
  2. 2.Department of Construction EngineeringHebei Colleage of Industry and TechnologyShijiazhuangP. R. China

Personalised recommendations