Chemical Research in Chinese Universities

, Volume 35, Issue 2, pp 251–255 | Cite as

Facile Synthesis of Metalloporphyrins-Ba2+ Composites as Recyclable and Efficient Catalysts for Olefins Epoxidation Reactions

  • Qian He
  • Ying Zhang
  • Huajian Xiao
  • Xiaohui HeEmail author
  • Xiantai Zhou
  • Hongbing JiEmail author


A facile co-precipitation method was developed to prepare the novel metalloporphyrins-Ba2+ composites with ca. 3 μm diameter and olive-like morphology. Olefins epoxidation reactions were employed to investigate their catalytic performance. Compared with the free metalloporphyrins, the composites exhibited not only the improved stability and recyclability, but also the enhanced catalytic activity. Such catalytic behaviors could be related to the unique structure of the composites, e.g., the strong interaction between R-SO3- and Ba2+ ions and the uniform distribution of metalloporphyrins on the catalyst surface, respectively. Furthermore, the composites showed good compatibility with a wide range of substrates. The well-designed composites are expected to be efficient catalysts, alternative to many sophisticated-synthesized metalloporphrins-based materials, in the industrially important reactions.


Metalloporphyrin FeTPPS-Ba2+ Olefins epoxidation Catalytic activity Recyclability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_8348_MOESM1_ESM.pdf (407 kb)
Facile Synthesis of Metalloporphyrins-Ba2+ Composites as Recyclable and Efficient Catalysts for Olefins Epoxidation Reactions


  1. [1]
    Mansuy D., CR. Chim., 2007, 10(4/5), 392CrossRefGoogle Scholar
  2. [2]
    Li Y., Zhou X. T., Ji H. B., Catal. Commun., 2012, 27(19), 169CrossRefGoogle Scholar
  3. [3]
    Sakthipriya P., Ananthi N., J. Porphyr. Phthalocya., 2016, 20(6), 730CrossRefGoogle Scholar
  4. [4]
    Li P., Cao Z., Organometallics, 2018, 37(3), 406CrossRefGoogle Scholar
  5. [5]
    Zhao Q. N., Song Q. W., Liu P., Zhang Q. X., Gao J. H., Zhang K., Chinese J. Chem., 2018, 36(3), 187CrossRefGoogle Scholar
  6. [6]
    Ke B. B., Wan L. S., Huang X. J., Xu Z. K., Chem. Res. Chinese Universities, 2011, 27(2), 339Google Scholar
  7. [7]
    Liu L. H., Yu M. M., Wayland B. B., Fu X. F., Chem. Commun., 2010, 46(34), 6353CrossRefGoogle Scholar
  8. [8]
    Yang K., Tong S. L., Yan Y., Kang E. H., Xiao F. S., Li Q., Chang X., Fang C. G., Chem. Res. Chinese Universities, 2005, 21(3), 326CrossRefGoogle Scholar
  9. [9]
    Alemohammad T., Rayati S., Safari N., J. Porphyr. Phthalocya., 2015, 19(12), 1279CrossRefGoogle Scholar
  10. [10]
    Jeong E. Y., Ansari M. B., Park S. E., ACS Catal., 2011, 1(8), 855CrossRefGoogle Scholar
  11. [11]
    Zhou X. T., Ren Q. G., Ji H. B., Tetrahedron Lett., 2012, 53(26), 3369CrossRefGoogle Scholar
  12. [12]
    Aguiar A. R., Alvarenga E. S., Oliveira R. P., Carneiro V. M. T., Moura L. G., J. Mol. Struct., 2018, 1165, 312CrossRefGoogle Scholar
  13. [13]
    Darensbourg D. J., Polym. Degrad. Stabil., 2018, 149, 45CrossRefGoogle Scholar
  14. [14]
    Li A., Wu S., Adams J. P., Snajdrova R., Li Z., Chem. Commun., 2014, 50(63), 8771CrossRefGoogle Scholar
  15. [15]
    Zhao S., Liu C., Guo Y., Xiao J. C., Chen Q. Y., J. Org. Chem., 2014, 79(18), 8926CrossRefGoogle Scholar
  16. [16]
    Nakagaki S., Mantovani K. M., Machado G. S., Castro K. A., Wypych F., Molecules, 2016, 21(3), 291CrossRefGoogle Scholar
  17. [17]
    He X. H., Chen L., He Q., Xiao H. J., Zhou X. T., Ji H. B., J. Chem. Technol. Biot., 2017, 92(10), 2594CrossRefGoogle Scholar
  18. [18]
    Sun S., Yu Q., Zhang W., Zhao X., Li J., Zhang F. X., Catal. Lett., 2017, 147(1), 228CrossRefGoogle Scholar
  19. [19]
    Antonangelo A. R., Bezzu C. G., Mughal S. S., Malewschik T., McKeown N. B., Nakagaki S., Catal. Commun., 2017, 99, 100CrossRefGoogle Scholar
  20. [20]
    Naik R., Joshi P., Umbarkar S., Deshpande R. K., Catal. Commun., 2005, 6(2), 125CrossRefGoogle Scholar
  21. [21]
    Ye Y. J., Zhou X. T., Huang J. W., Cai J. H., Wu W. H., Yu H. C., Ji H. B., Ji L. N., J. Mol. Catal. A: Chem., 2010, 331(1/2), 29CrossRefGoogle Scholar
  22. [22]
    Wang X. Y., Niu C. G., Hu L. Y., Huang D. W., Wu S. Q., Zhang L., Wen X. J., Zeng G. M., Sensor. Actuat. B: Chem., 2017, 243, 1046CrossRefGoogle Scholar
  23. [23]
    Zou C., Zhang Z., Xu X., Gong Q., Li J., Wu C. D., J. Am. Chem. Soc., 2012, 134(1), 87CrossRefGoogle Scholar
  24. [24]
    Yamaguchi T., Tsukamoto K., Ikeda O., Tanaka R., Kuwabara T., Takahashi K., Electrochim. Acta, 2010, 55(20), 6042CrossRefGoogle Scholar
  25. [25]
    Rezaeifard A., Jafarpour M., Catal. Sci. Technol., 2014, 4(7), 1960CrossRefGoogle Scholar
  26. [26]
    Li J., Zhang X., Pan B., Xu J., Liu L., Ma J., Yang M., Zhang Z., Tong Z., Chinese J. Chem., 2016, 34(10), 1021CrossRefGoogle Scholar
  27. [27]
    Brule E., de Miguel Y. R., Org. Biomol. Chem., 2006, 4(4), 599CrossRefGoogle Scholar
  28. [28]
    Liu S. Y., Ren Q. Z., Ding X. J., Wang A. Q., Hou Z. S., Zhang H., Chem. J. Chinese Universities, 2009, 30(7), 1272Google Scholar
  29. [29]
    Zhang K., Farha O. K., Hupp J. T., Nguyen S. T., ACS Catal., 2015, 5(8), 4859CrossRefGoogle Scholar
  30. [30]
    Fareghi-Alamdari R., Hafshejani S. M., Taghiyar H., Yadollahi B., Farsani M. R., Catal. Commun., 2016, 78, 64CrossRefGoogle Scholar
  31. [31]
    Zhang A., Li L., Li J., Zhang Y., Gao S., Catal. Commun., 2011, 12(13), 1183CrossRefGoogle Scholar
  32. [32]
    Dai W., Li G. S., Chen B., Wang L. Y., Gao S., Org. Lett., 2015, 17(4), 904CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.Fine Chemical Industry Research Institute, School of ChemistrySun Yat-sen UniversityGuangzhouP. R. China
  2. 2.Fine Chemical Industry Research Institute, School of Chemical Engineering and TechnologySun Yat-sen University Zhuhai CompusZhuhaiP. R. China

Personalised recommendations