Hydrothermal Synthesized Co-Ni3S2 Ultrathin Nanosheets for Efficient and Enhanced Overall Water Splitting

  • Juan Jian
  • Long Yuan
  • He Li
  • Huanhuan Liu
  • Xinghui Zhang
  • Xuejiao Sun
  • Hongming YuanEmail author
  • Shouhua Feng


We used the one-step hydrothermal controlled synthesis method for Co-Ni3S2 ultrathin nanosheets grown directly on nickel foam(NF). The as-synthesized Co-Ni3S2/NF showed enhanced activities in the hydrogen evolution reaction(HER), oxygen evolution reaction(OER) and better overall water splitting(OWS) efficiency than the un-doped Ni3S2/NF. The voltage of Co-Ni3S2/NF for OWS was only 1.58 V at the current density of 10 mA/cm2 and with long time(>30 h) current output during the current-density(i-t) test. The good i-t performance was also observed in both HER and OER processes. Additionally, the Co-Ni3S2/NF showed a large current density(>1 A/cm2) for both HER and OER. When the current densities reached 100 and 1000 mA/cm2, the required overpotentials for Co-Ni3S2/NF were 0.35 and 0.75 V for OER and 0.30 and 0.85 V for HER. Therefore, after introducing Co, th e activity of Ni3S2-based material was strongly enhanced.


Co-Ni3S2/nickel foam(NF) Ultrathin nanosheet Water splitting Hydrogen evolution reaction Oxygen evolution reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Feng Y. N., Chen C., Liu Z. G., Fei B. J., Lin P., Li Q. P., Sun S. G., Du S. W., J. Mater. Chem. A, 2015, 3, 7163CrossRefGoogle Scholar
  2. [2]
    Feng X. L., Qu Z. K., Chen J., Wang D. D., Chen X., Yang W. S., Chem. J. Chinese Universities, 2017, 38(11), 1999Google Scholar
  3. [3]
    Wang F., Song S. Y., Li J. Q., Pan J., Wang X., Zhang H. J., Nanoscale, 2017, 9, 6346CrossRefGoogle Scholar
  4. [4]
    Zhang Y., Shao Q., Long S., Huang X. Q., Nano Energy, 2018, 45, 448CrossRefGoogle Scholar
  5. [5]
    Qian M. M., Cui S. S., Jiang D. C., Zhang L., Du P. W., Adv. Mater., 2017, 1704075Google Scholar
  6. [6]
    Yang Y. S., Zhuang L. Z., Lin R. J., Li M. R., Xu X. Y., Rufford T. E., Zhu Z. H., J. Power Sources, 2017, 349, 68CrossRefGoogle Scholar
  7. [7]
    Chung D. Y., Jun S. W., Yoon G., Kim H., Yoo J. M., Lee K. S., Kim T., Shin H., Sinha A. K., Kwon S. G., Kang K., Hyeon T., Sung Y. E., J. Am. Chem. Soc., 2017, 139, 6669CrossRefGoogle Scholar
  8. [8]
    Jian J., Li H., Sun X. J., Kong D. C., Zhang X. H., Zhang L., Yuan H. M., Feng S. H., ACS Sustainable Chem. Eng., 2019, Doi: 10.1021/acssuschemeng.9b00229Google Scholar
  9. [9]
    Du C. C., Huang H., Jian J., Wu Y., Shang M. X., Song W. B., Applied Catalysis A, 2017, 538, 1CrossRefGoogle Scholar
  10. [10]
    Zou J. Y., Liu Y. P., Chen H., Li G. D., Chem. J. Chinese Universities, 2018, 39(6), 1249Google Scholar
  11. [11]
    Amiinu I. S., Pu Z. H., He D. P., Monestel H. G. R., Mu S. C., Carbon, 2018, 137, 274CrossRefGoogle Scholar
  12. [12]
    Liu Y. P., Li Q. J., Si R., Li G. D., Li W., Liu D. P., Wang D. J., Sun L., Zhang Y., Zou X. X., Adv. Mater., 2017, 29, 1606200CrossRefGoogle Scholar
  13. [13]
    Zhao Q., Zhong D. Z., Liu L., Li D. D., Hao G. Y., Li J. P., J. Mater. Chem. A, 2017, 5, 14639CrossRefGoogle Scholar
  14. [14]
    Yuan C. Z., Sun Z. T., Jiang Y. F., Yang Z. K., Jiang N., Zhao Z. W., Qazi U. Y., Zhang W. H., Xu A. W., Small, 2017, 13, 1604161CrossRefGoogle Scholar
  15. [15]
    Ho T. A., Bae C., Nam H., Kim E., Lee S. Y., Park J. H., Shin H., ACS Appl. Mater. Interfaces, 2018, 10, 12807CrossRefGoogle Scholar
  16. [16]
    Feng L. L., Yu G. T., Wu Y. Y., Li G. D., Li H., Sun Y. H., Asefa T., Chen W., Zou X. X., J. Am. Chem. Soc., 2015, 137, 14023CrossRefGoogle Scholar
  17. [17]
    Zou X., Liu Y. P., Li G. D., Wu Y. Y., Liu D. P., Wang L., Li H. W., Wang D. J., Zhang Y., Zou X. X., Adv. Mater., 2017, 29, 1700404CrossRefGoogle Scholar
  18. [18]
    Feng J. X., Wu J. Q., Tong Y. X., Li G. R., J. Am. Chem. Soc., 2018, 140, 610CrossRefGoogle Scholar
  19. [19]
    Lv J. J., Zhao J., Fang H., Jiang L. P., Li L. L., Ma J., Zhu J. J., Small, 2017, 13, 1700264CrossRefGoogle Scholar
  20. [20]
    Kou T. Y., Smart T., Yao B., Chen I., Thota D., Ping Y., Li Y., Adv. Energy Mater., 2018, 8, 1703538CrossRefGoogle Scholar
  21. [21]
    Cui Z., Ge Y. C., Chu H., Baines R., Dong P., Tang J. H., Yang Y., Ajayan P. M., Ye M. X., Shen J. F., J. Mater. Chem. A, 2017, 5, 1595CrossRefGoogle Scholar
  22. [22]
    Jian J., Yuan L., Qi H, Sun X. J., Zhang L., Li H., Yuan H. M., Feng S. H., ACS Appl. Mater. Interfaces, 2018, 10, 40568CrossRefGoogle Scholar
  23. [23]
    Qu Y. J., Yang M. Y., Chai J. W., Tang Z., Shao M. M., Kwok C. T., Yang M., Wang Z. Y., Chua D., Wang S. J., Lu Z. G., Pan H., ACS Appl. Mater. Interfaces, 2017, 9, 5959CrossRefGoogle Scholar
  24. [24]
    Wu C. G., Liu B. T., Wang J., Su, Y. Y., Yan H. Q., Ng C. T., Li C., Wei J. M., Applied Surface Science, 2018, 441, 1024CrossRefGoogle Scholar
  25. [25]
    Wang Y., Liu X. H., Zhang N., Qiu G. Z., Ma R. Z., Applied Clay Science, 2018, 165, 277CrossRefGoogle Scholar
  26. [26]
    Yang L., Yao Y. D., Zhu G. L., Ma M., Wang W. Y., Wang L. C., Zhang H., Zhang Y., Jiao Z. F., J. Alloys Compounds, 2018, 762, 637CrossRefGoogle Scholar
  27. [27]
    Du C. C., Shang M. X., Mao J. X., Song W. B., J. Mater. Chem. A, 2017, 5, 15940CrossRefGoogle Scholar
  28. [28]
    Li Y. J., Zhang H. C., Jiang M., Zhang Q., He P. L., Sun X. M., Adv. Funct. Mater., 2017, 1702513Google Scholar
  29. [29]
    Al-Mamun M., Wang Y., Liu P. R., Zhong Y. L., Yin H. J., Su X. T., Zhang H. M., Yang H. G., Wang D., Tang Z. Y., Zhao H. J., J. Mater. Chem. A, 2016, 4, 18314CrossRefGoogle Scholar
  30. [30]
    Wang F., Song S. Y., Li J. Q., Pan J., Wang X., Zhang H. J., Nanoscale, 2017, 9, 6346CrossRefGoogle Scholar
  31. [31]
    Chen Y. L., Yu G. T., Chen W., Liu Y. P., Li G. D., Zhu P. W., Tao Q., Li Q. J., Liu J. W., Shen X. P., Li H., Huang X. R., Wang D. J., Asefa T., Zou X. X., J. Am. Chem. Soc. 2017, 139, 12370CrossRefGoogle Scholar
  32. [32]
    Zhu W. X., Yue X. Y., Zhang W. T., Yu S. X., Zhang Y. H., Wang J., Wang J. L., Chem. Commun., 2016, 52, 1486CrossRefGoogle Scholar
  33. [33]
    Zhang F. F., Ge Y. C., Chu H., Dong P., Baines R., Pei Y., Ye M. X., Shen J. F., ACS Appl. Mater. Interfaces, 2018, 10, 7087CrossRefGoogle Scholar
  34. [34]
    Liang H. F., Gandi A. N., Anjum D. H., Wang X. B., Schwingenschlögl U., Alshareef H. N., Nano Lett., 2016, 16, 7718CrossRefGoogle Scholar
  35. [35]
    Niu S., Jiang W. J., Tang T., Zhang Y., Li J. H., Hu J. S., Adv. Sci., 2017, 1700084Google Scholar
  36. [36]
    Balogun M. S., Qiu W. T., Huang Y., Yang H., Xu R. M., Zhao W. X., Li G. R., Ji H. B., Tong Y. X., Adv. Mater., 2017, 1702095Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Juan Jian
    • 1
  • Long Yuan
    • 1
    • 2
  • He Li
    • 1
  • Huanhuan Liu
    • 1
  • Xinghui Zhang
    • 1
  • Xuejiao Sun
    • 1
  • Hongming Yuan
    • 1
    Email author
  • Shouhua Feng
    • 1
  1. 1.State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of ChemistryJilin UniversityChangchunP. R. China
  2. 2.Key Laboratory of Functional Materials Physics and Chemistry, Ministry of EducationJilin Normal UniversitySipingP. R. China

Personalised recommendations