Chemical Research in Chinese Universities

, Volume 35, Issue 4, pp 680–685 | Cite as

Research on Chemical Reactivity of Nitrotriazolam in Its Process of Preparation

  • Bowen Yang
  • Qiufeng AnEmail author
  • Zhigang Zhao
  • Kaiyuan Shao
  • Wenxiang HuEmail author


Chemical reaction possibility was described quantitatively for the case of nitrotriazolam preparation with 2-clonazepam by using the data of two quantum chemical reactivity indices: net electrophilicity index and Wiberg bond order. Furthermore, relevant reaction mechanism was derived from the aspect of quantum chemistry. The results show that the indices used can quantitatively explain the chemical reactivity and reaction mechanism of the nitrotriazolam preparation. To validate the universal applicability of the proposed approach, the authors continued to use the quantum chemical reactivity indices to describe some classic chemical reactions, expecting to predict major issues related to physical organic chemistry, such as new chemical reactions and their mechanisms.


Density functional theory Net electrophilicity index Wiberg bond order Chemical reactivity Reaction mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_8339_MOESM1_ESM.pdf (315 kb)
Supplementary material, approximately 315 KB.


  1. [1]
    Strambi L. F., Marelli S., Zucconi M., Galbiati A., Biggio G., J. Neurol., 2017, 264, 1362CrossRefGoogle Scholar
  2. [2]
    Shen X. Z., He H. J., Yang B. W., Zhao Z. G., Shao K. Y., Hu W. X., Chem. Res. Chinese Universities, 2017, 33(5), 773CrossRefGoogle Scholar
  3. [3]
    Han X., Shao K. Y., Hu W. X., Chem. Res. Chinese Universities, 2018, 34(4), 571CrossRefGoogle Scholar
  4. [4]
    Shao K. Y., He H. J., Wang G., Liu Y. J., Shen X. Z., Hu W. X., Chemistry, 2017, 80(11), 1061Google Scholar
  5. [5]
    Parr R. G., Ed.: Chattaraj P. K., Chemical Reactivity Theory: A Density Functional Theory View, Taylor & Francis Group, London, 2009Google Scholar
  6. [6]
    Chattaraj P. K., Roy D. R., Chem. Rev., 2007, 107, 46CrossRefGoogle Scholar
  7. [7]
    Geerlings P. K., Profit F. D., Langenaeker W., Chem. Rev., 2003, 103, 1793CrossRefGoogle Scholar
  8. [8]
    Liu S. B., Acta Phys.-Chem. Sin., 2009, 25(3), 590Google Scholar
  9. [9]
    Parr R. G., Szentpaly L. V., Liu S., J. Am. Chem. Soc., 1999, 121, 1922CrossRefGoogle Scholar
  10. [10]
    Chattaraj P. K., Sarkar U., Roy D. R., Chem. Rev., 2006, 106, 2065CrossRefGoogle Scholar
  11. [11]
    Shao K. Y., Wang Q., Liu M., Xing X., Hu W. X., Chemistry, 2014, 77(3), 227Google Scholar
  12. [12]
    Parr R. G., Yang W., J. Am. Chem. Soc., 1984, 106, 4049CrossRefGoogle Scholar
  13. [13]
    Fukui K., Science, 1987, 218, 747CrossRefGoogle Scholar
  14. [14]
    Padmanabhan J., Parthasarathi R., Elango M., Subramanian V., Krishnamoorthy B. S., Gutierrez-Oliva S., Toro-Labbe A,. Roy D. R,. Chattaraj P. K., J. Phys. Chem. A, 2007, 111(37), 9130CrossRefGoogle Scholar
  15. [15]
    Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmay-lov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staro-verov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam N. J., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannen-berg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision A.1, Gaussian Inc., Wallingford CT, 2009Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical EngineeringShaanxi University of Science and TechnologyXi’anP. R. China
  2. 2.College of Chemistry and Environment Protection EngineeringSouthwest University for NationalitiesChengduP. R. China
  3. 3.Jingdong Xianghu Microwave Chemistry Union LaboratoryBeijing Excalibur Space Military Academy of Medical SciencesBeijingP. R. China
  4. 4.Aerospace Systems Division, Strategic Support TroopsChinese People’s Liberation ArmyBeijingP. R. China

Personalised recommendations