A New Strategy for Rapid Classification of Honeys by Simple Cluster Analysis Method Based on Combination of Various Physicochemical Parameters

  • Xiaohua ZhangEmail author
  • Suya Zhang
  • Xiangdong QingEmail author
  • Zuokun Lu


An array of real honey samples from 3 different botanical origins and 4 provinces of China, as well as two honeys with common adulterants[white sugar and high fructose corn syrup(HFCS)], were analyzed with a new strategy of “simple cluster analysis” based on physicochemical parameters of honey. The results showed that the physicochemical parameters varied greatly for different honey samples. For example, the minimum conductivity of honey samples was less than 1/17 of the maximum value. Therefore, the physicochemical parameters could be used to distinguish different types of honey. The results are promising, as different kinds of testing honey were successfully discriminated into different groups, allowing us to verify the authenticity of honeys. Furthermore, this approach was followed to successfully analyze two honeys with common adulterants which are difficult to be identified when they are mixed with true honeys. The results indicated the accuracy and reliability of the proposed strategy, and provided more references for the quality classification of honeys.


Honey Simple cluster analysis Geographical origin Botanical origin Adulteration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Manzanares A. B., Garcıa Z. H., Galdón B. R., Rodríguez E. R., Romero C. D., Food Chem., 2011, 126, 664CrossRefGoogle Scholar
  2. [2]
    Miguel L. M., Albertina T. Z., Regina A. S., John C. C., Jesus G. I., José S.T., Talanta, 2018, 185, 196CrossRefGoogle Scholar
  3. [3]
    Naila A., Flint S. H., Sulaiman A. Z., Ajit A., Weeds Z., Food Control, 2018, 90, 152CrossRefGoogle Scholar
  4. [4]
    Ouchemoukh S., Louaileche H., Schweitzer P., Food Control, 2007, 18(1), 52CrossRefGoogle Scholar
  5. [5]
    Cushnie T. P. T., Lamb A. J., Int. J. Antimicrob. Ag., 2005, 26(5), 343CrossRefGoogle Scholar
  6. [6]
    Havsteen B. H., Pharmacol. Therapeut., 2002, 96, 67CrossRefGoogle Scholar
  7. [7]
    Zhang X. H., Wu H. L., Wang J. Y., Tu D. Z., Kang C., Zhao J., Chen Y., Miu X. X., Yu R. Q., Food Chem., 2013, 138, 62CrossRefGoogle Scholar
  8. [8]
    Jamróz M. K., Paradowska K., Zawada K., Makarova K., Kazmierski S., Wawer I., J. Sci. Food Agr., 2014, 94(2), 246CrossRefGoogle Scholar
  9. [9]
    Siddiqui A. J., Musharraf S. G., Choudhary M. I., Rahman A. U., Food Chem., 2017, 217, 687CrossRefGoogle Scholar
  10. [10]
    Wu L., Du B., Vander Heyden Y., Chen L., Zhao L., Wang M., Xue X., Trends Anal. Chem., 2017, 86, 25CrossRefGoogle Scholar
  11. [11]
    Pasias I. N., Kiriakou I. K., Proestos C., Food Chem., 2017, 229, 425CrossRefGoogle Scholar
  12. [12]
    Jandric’ Z., Haughey S. A., Frew R. D., McComb K., Galvin-King P., Elliott C. T., Cannavan A., Food Chem., 2015, 189, 52CrossRefGoogle Scholar
  13. [13]
    Gan Z., Yang Y., Li J., Wen X., Zhu M., Jiang Y., Ni Y., J. Food Eng., 2016, 178, 151CrossRefGoogle Scholar
  14. [14]
    Escriche I., Kadar M., Domenech E., Gil-Sanchez L., J. Food Eng., 2012, 109, 449CrossRefGoogle Scholar
  15. [15]
    She S., Chen L., Song H., Lin G., Li Y., Zhou J., Liu C., Food Chem., 2019, 272, 580CrossRefGoogle Scholar
  16. [16]
    Yilmaz M. T., Tatlisu N. B., Toker O. S., Karaman S., Dertli E., Sagdic O., Arici M., Food Res. Int., 2014, 64, 634CrossRefGoogle Scholar
  17. [17]
    Kaygusuz H., Tezcan F., Bedia Erim F., Yildiz O., Sahin H., Can Z., Kolayli S., LWT-Food Sci. Technol., 2016, 68, 273CrossRefGoogle Scholar
  18. [18]
    Kalaycıoğlu Z., Kaygusuz H., Döker S., Kolayi S., Erim F. B., LWT - Food Sci. Technol., 2017, 84, 402CrossRefGoogle Scholar
  19. [19]
    Bougrini M., Tahri K., Saidi T., Hassani N. E. A. E., Bouchikhi B., Bari N. E., Food Anal. Methods, 2016, 9(8), 2161CrossRefGoogle Scholar
  20. [20]
    Zhao J., Du X., Cheng N., Chen L., Xue X., Zhao J., Wu L., Cao W., Food Chem., 2016, 194, 167CrossRefGoogle Scholar
  21. [21]
    Se K. W., Ghoshal S. K., Wahab R. A., Ibrahim R. K. R., Lani M. N., Food Res. Int., 2018, 105, 453CrossRefGoogle Scholar
  22. [22]
    Popek S., Halagarda M., Kursa K., LWT- Food Sci. Technol., 2017, 77, 482CrossRefGoogle Scholar
  23. [23]
    SN/T 0852-2012, Rules for the Inspection of Honey for Import and Export, Beijing, China Standards Press, 2012 Google Scholar
  24. [24]
    [24] GB/T 18932.15-2003, Method for the Determination of Electrical Conductivity in Honey, China Standards Press, Beijing, 2003 Google Scholar
  25. [25]
    Liviu M., Daniel D., Moise A., Bobis O., Laslo L., Bogdanov S., Food Chem., 2009, 112, 863CrossRefGoogle Scholar
  26. [26]
    Soch R., Juszczak L., Pietrzyk S., Fortuna T., Food Chem., 2009, 113, 568CrossRefGoogle Scholar
  27. [27]
    Sanz M. L., Gonzalez M., de Lorenzo C., Sanz J., Martinez-Castro I., Food Chem., 2005, 91, 313CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Food and Bioengineering CollegeXuchang UniversityXuchangP. R. China
  2. 2.Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental EngineeringHunan University of Humanities, Science and TechnologyLoudiP. R. China

Personalised recommendations