Chemical Research in Chinese Universities

, Volume 35, Issue 2, pp 261–270 | Cite as

Freeze-drying-assisted Synthesis of Mesoporous CoMoO4 Nanosheets as Anode Electrode Material for Enhanced Lithium Batteries

  • Wei WangEmail author
  • Tao Wang
  • Xuecheng Fan
  • Cuilin Zhang
  • Jinxing Hu
  • Hui Chen
  • Zhenxing Fang
  • Jiefeng Yan
  • Bing LiuEmail author


A facile and green freeze-drying-assisted method was proposed to synthesize CoMoO4 mesoporous nanosheets( MPNSs). The resulting product exhibits a high specific capacity and good rate performance when evaluated as an anode material for lithium-ion batteries(LIBs). The reversible specific capacity can be kept at 1105.2 mA·h·g–1 after 100 cycles at a current density of 0.2 A/g. Even at the current densities of 1 and 4 A/g, the CoMoO4 MPNSs electrode can still retain the reversible capacities of 1148.7 and 540 mA·h·g–1, respectively. Furthermore, the full cell(LiFePO4 cathode/CoMoO4 MPNSs anode) displays a stable discharge capacity of 146.7 mA·h·g–1 at 0.1 C (1 C=170 mA/g) together with an initial coulombic efficiency of 98.2%. In addition, the CoMoO4 crystal structure is destroyed and reduced into Co0 and Mo0 in the first discharge process. In the subsequent cycles, the attractive Li storage properties come from the reversible conversions between Co/Co2+ and Mo/Mo6+. The improved electrochemical performance of CoMoO4 MPNSs is mainly attributed to their unique porous structures, which not only possess a good ion diffusion and electronic conduction pathway, but also provide many cavities to alleviate the volume changes during repeated cycling. This work offers a new perspective to the design of other porous electrode materials with a good energy storage performance.


Freeze-drying Mesoporous nanosheet CoMoO4 Anode material Lithium storage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_8316_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 1.10 MB.


  1. [1]
    Xin T., Diao F. Y., Li C., Feng H. L., Liu G. J., Zou J. J., Ding Y. H., Liu B., Wang Y. Q., Mater. Res. Bull., 2018, 99, 196CrossRefGoogle Scholar
  2. [2]
    Zou J. J., Liu B., Liu H. Q., Ding Y. H., Xin T., Wang Y. Q., Mater. Res. Bull., 2018, 107, 468CrossRefGoogle Scholar
  3. [3]
    Ding Y. H., Liu B., Zou J. J., Liu H. Q., Xin T., Xia L. H., Wang Y. Q., Mater. Res. Bull., 2018, 106, 7CrossRefGoogle Scholar
  4. [4]
    Wang C., Wu L. X., Wang H., Zuo W. H., Li Y. Y., Liu J. P., Adv. Funct. Mater., 2015, 25, 3524CrossRefGoogle Scholar
  5. [5]
    Wang Z. Y., Madhavi S., Lou X. W., J. Phys. Chem. C, 2012, 116, 12508CrossRefGoogle Scholar
  6. [6]
    Sakaushi K., Thomas J., Kaskel S., Eckert J., Chem. Mater., 2013, 25, 2557CrossRefGoogle Scholar
  7. [7]
    Ahn J. H., Park G. D., Kang Y. C., Lee J. H., Electrochim. Acta, 2015, 174, 102CrossRefGoogle Scholar
  8. [8]
    Cherian C. T., Reddy M. V., Haur S. C., Chowdari B. V. R., ACS Appl. Mater. Interfaces, 2013, 5, 918CrossRefGoogle Scholar
  9. [9]
    Xue R. N., Hong W., Pan Z., Jin W., Zhao H. L., Song Y. H., Zhou J. K., Liu Y., Electrochim. Acta, 2016, 222, 838CrossRefGoogle Scholar
  10. [10]
    Wei H. X., Yang J., Zhang Y. F., Qian Y., Geng H. B., J. Colloid Interf. Sci., 2018, 524, 256CrossRefGoogle Scholar
  11. [11]
    Zhang L. F., He W. J., Ling M., Shen K. C., Liu Y., Guo S. W., Electrochim. Acta, 2017, 252, 322CrossRefGoogle Scholar
  12. [12]
    You J. F., Xin L., Yu X., Zhou X., Liu Y., Appl. Phys. A, 2018, 124, 271CrossRefGoogle Scholar
  13. [13]
    Ju Z. C., Zhang E., Zhao Y. L., Xing Z., Zhuang Q. C., Qiang Y. H., Qian Y. T., Small, 2015, 11, 4753CrossRefGoogle Scholar
  14. [14]
    Liu H. W., Tan L., Ionics, 2010, 16, 57CrossRefGoogle Scholar
  15. [15]
    Ding Y., Wan Y., Min Y. L., Zhang W., Yu S. H., Inorg. Chem., 2008, 47, 7813CrossRefGoogle Scholar
  16. [16]
    Yu H., Guan C., Rui X. H., Ouyang B., Yadian B. L., Huang Y. Z., Zhang H., Hoster H. E., Fan H. J., Yan Q. Y., Nanoscale, 2014, 6, 10556CrossRefGoogle Scholar
  17. [17]
    Ko Y. N., Kang Y. C., Park S. B., RSC Adv., 2014, 4, 17873CrossRefGoogle Scholar
  18. [18]
    Kim J. K., Kim J. H., Kang Y. C., Chem. Eng. J., 2018, 333, 665CrossRefGoogle Scholar
  19. [19]
    Wang Y. S., Sun Y. F., Zhang X., Wen Y. H., Guo J. X., RSC Adv., 2016, 6, 51710CrossRefGoogle Scholar
  20. [20]
    Yao J. Y., Gong Y. J., Yang S. B., Xiao P., Zhang Y. H., Keyshar K., Ye G. L., Ozden S., Vajtai R., Ajayan P. M., ACS Appl. Mater. Interfaces, 2014, 6, 20414CrossRefGoogle Scholar
  21. [21]
    Yang T., Zhang H. N., Luo Y. Z., Mei L., Guo D., Li Q. H., Wang T. H., Electrochim. Acta, 2015, 158, 327CrossRefGoogle Scholar
  22. [22]
    Guo J. X., Zhu H. F., Zhou S. Q., Sun Y. F., Zhang X., Ionics, 2015, 21, 2993CrossRefGoogle Scholar
  23. [23]
    Xu J., Gu S. Z., Fan L., Xu P., Lu B., Electrochim. Acta, 2016, 196, 125CrossRefGoogle Scholar
  24. [24]
    Lyu D. H., Zhang L. L., Wei H. X., Geng H. B., Gu H. W., RSC Adv., 2017, 7, 51506CrossRefGoogle Scholar
  25. [25]
    Chen Y. P., Liu B. R., Jiang W., Liu Q., Liu J. Y., Wang J., Zhang H. S., Jing X. Y., J. Power Sources, 2015, 300, 132CrossRefGoogle Scholar
  26. [26]
    Wang B., Li S. M., Wu X. Y., Liu J. H., Tian W. M., Chen J., New J. Chem., 2016, 40, 2259CrossRefGoogle Scholar
  27. [27]
    Yang Y., Wang S. T., Jiang C. H., Lu Q. C., Tang Z. L., Wang X., Chem. Mater., 2016, 28, 2417CrossRefGoogle Scholar
  28. [28]
    Wang Y. X., Wu Y., Xing L. L., Wang Q., Xue X. Y., J. Alloy. Compd., 2016, 689, 655CrossRefGoogle Scholar
  29. [29]
    Chen Y. Y., Wang Y., Shen X. P., Cai R., Yang H. X., Xu K. Q., Yuan A. H., Ji Z. Y., J. Mater. Chem. A, 2018, 6, 1048CrossRefGoogle Scholar
  30. [30]
    Zhang L., Zheng S. S., Wang L., Tang H., Xue H. G., Wang G. X., Pang H., Small, 2017, 13, 1700917CrossRefGoogle Scholar
  31. [31]
    Wang H., Liu X. Y., Chuah Y. J., Goh J. C. H., Li J. L., Xu H. Y., Chem. Commun., 2013, 49, 1431CrossRefGoogle Scholar
  32. [32]
    Wang W., Sun Y., Liu B., Wang S. G., Cao M. H., Carbon, 2015, 91, 56CrossRefGoogle Scholar
  33. [33]
    Wang W., Qin J. W., Cao M. H., ACS Appl. Mater. Interfaces, 2016, 8, 1388CrossRefGoogle Scholar
  34. [34]
    Cui Z. T., Wang S. G., Zhang Y. H., Cao M. H., Electrochim. Acta, 2015, 182, 507CrossRefGoogle Scholar
  35. [35]
    Yin Z. Y., Zhang X., Cai Y. Q., Chen J. Z., Wong J. I., Tay Y. Y., Chai J. W., Wu J., Zeng Z. Y., Zheng B., Yang H. Y., Zhang H., Angew. Chem. Int. Ed., 2014, 53, 12560Google Scholar
  36. [36]
    Lei F. C., Sun Y. F., Liu K. T., Gao S., Liang L., Pan B. C., Xie Y., J. Am. Chem. Soc., 2014, 136, 6826CrossRefGoogle Scholar
  37. [37]
    Adamski P., Moszyński D., Komorowska A., Nadziejko M., Sarnecki A., Albrecht A., Inorg. Chem., 2018, 57, 9844CrossRefGoogle Scholar
  38. [38]
    Wang W., Qin J. W., Yin Z. G., Cao M. H., ACS Nano, 2016, 10, 10106CrossRefGoogle Scholar
  39. [39]
    Hy S., Felix F., Rick J., Su W. N., Wang B. J. H., J. Am. Chem. Soc., 2014, 136, 999CrossRefGoogle Scholar
  40. [40]
    He Y. Y., Li A. H., Dong C. F., Li C. C., Xu L. Q., Chem. Eur. J., 2017, 23, 13724CrossRefGoogle Scholar
  41. [41]
    Jin S. X., Yang G. Z., Song H. W., Cui H., Wang C. X., ACS Appl. Mater. Interfaces, 2015, 7, 24932CrossRefGoogle Scholar
  42. [42]
    Ang W. A., Cheah Y. L., Wong C. L., Prasanth R., Hng H. H., Madhavi S., J. Phys. Chem. C, 2013, 117, 16316CrossRefGoogle Scholar
  43. [43]
    Sharma Y., Sharma N., Subba Rao G. V., Chowdari B. V. R., Adv. Funct. Mater., 2007, 17, 2855Google Scholar
  44. [44]
    Popovic J., Demir Cakan R., Tornow J., Morcrette M., Su D. S., Schlögl R., Antonietti M., Titirici M. M., Small, 2011, 7, 1127Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Wei Wang
    • 1
    Email author
  • Tao Wang
    • 1
  • Xuecheng Fan
    • 1
  • Cuilin Zhang
    • 1
  • Jinxing Hu
    • 1
  • Hui Chen
    • 1
  • Zhenxing Fang
    • 1
  • Jiefeng Yan
    • 1
  • Bing Liu
    • 2
    Email author
  1. 1.College of Science & TechnologyNingbo UniversityNingboP. R. China
  2. 2.State Key Laboratory of Bio-Fibers and Eco-TextilesQingdao UniversityQingdaoP. R. China

Personalised recommendations