Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 2, pp 271–276 | Cite as

Effects of Ag Doping Content and Dispersion on the Photocatalytic and Antibacterial Properties in ZnO Nanoparticles

  • Renquan Guan
  • Hongju ZhaiEmail author
  • Dewu Sun
  • Junkai Zhang
  • Yan Wang
  • Jiaxin Li
Article
  • 5 Downloads

Abstract

ZnO nanoparticles(NPs) with different contents of Ag dopants were obtained by one-step solvothermal method. The crystalline structures of the prepared composites were characterized by means of X-ray diffraction (XRD). The morphology and composition of the samples were studied by means of scanning transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS) and electron microscopy(SEM). Photoluminescence(PL) spectra have been used to investigate pure ZnO, Ag-ZnO and Ag-ZnO-PVP NPs to determine the effect of composition on PL properties. It was found that the Ag-ZnO samples showed stronger emissions than pure ZnO. The catalytic activity of samples was measured by the degradation rate of R6G, which exhibited that Ag-ZnO nanocomposite demonstrated enhanced photocatalytic activity compared to the pure ZnO NPs. The possible influence factors to the photocatalytic and antibacterial activities of the sample were explored, including Ag contents and dispersion. It was presented that the photocatalytic activity of Ag-ZnO-PVP was better than that of Ag-ZnO and it showed the highest photocatalytic activity with 7% of Ag content. The Ag-ZnO-PVP can kill the Escherichia coli(E. coli) cells.

Keywords

Ag-ZnO nanocomposite Photocatalysis Antibacterial activity Dispersion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Zhai H. J., Wang L. J., Sun D. W., Han D. L., Qi B., Li X. Y., Chang L. M., Yang J. H., J. Phys. Chem. Solids, 2015, 78, 35CrossRefGoogle Scholar
  2. [2]
    Zhai H. J., Wang L. J., Han D. L., Wang H., Wang J., Liu X. Y., Lin X., Li X. Y., Gao M., Yang J. H., J. Alloy. Compd., 2014, 600, 146CrossRefGoogle Scholar
  3. [3]
    Liu X. Y., Liu B., Li G. H., Liu Y. L., J. Mater. Chem. A, 2018, 6, 17177CrossRefGoogle Scholar
  4. [4]
    Li X. Y., Wang J., Yang J. H., Lang J. H., Lu S. Q., Wei M. B., Meng X. W., Kou C. L., Li X. F., J. Alloy. Compd., 2013, 580, 205CrossRefGoogle Scholar
  5. [5]
    Zhai H. J., Wang L. J., Sun D. W., Zhang Q., Lin X., Li X. Y., Yang J. H., Chang L. M., Li X. F., Catal. Lett., 2015, 145(4), 1041CrossRefGoogle Scholar
  6. [6]
    Li X. Y., Wang J., Yang J. H., Lang J. H., Wei M. B., Meng X. W., Lu S. Q., Sui Y. R., J. Mol. Catal. A: Chem., 2013, 378, 1CrossRefGoogle Scholar
  7. [7]
    Zhai H. J., Wang L. J., Sun D. W., Li X. Y., Chang L. M., Li X., Cryst. Res. Technol., 2014, 49(10), 794CrossRefGoogle Scholar
  8. [8]
    Ma X. C., Dai Y., Yu L., Huang B. B., Light: Sci. Appl., 2016, 5(2), e16017CrossRefGoogle Scholar
  9. [9]
    Lu C. C., Hu X. Y., Shi K. B., Hu Q., Zhu R., Yang H., Gong Q., Light: Sci. Appl., 2015, 4, e302CrossRefGoogle Scholar
  10. [10]
    Jasso-Salcedo A. B., Meimaroglou D., Hoppe S., Pla F., Escobar- Barrios V. A., J. Appl. Polym. Sci., 2016, 133(25), 43528Google Scholar
  11. [11]
    Kidambi S., Dai J., Li J. Bruening M. L., J. Am. Chem. Soc., 2004, 126(9), 2658CrossRefGoogle Scholar
  12. [12]
    Zhai H. J., Sun D. W., Wang H. S., J. Nanosci. Nanotechnol., 2006, 6, 1968CrossRefGoogle Scholar
  13. [13]
    Fu F. Y., Gu J. Y., Cao J. F., Shen R. S., Liu H. X., Zhang Y. Y., Liu X. D., Zhou J. P., ACS Sustain. Chem. Eng., 2018, 6(1), 738CrossRefGoogle Scholar
  14. [14]
    Li L. L., Zhang F., Zhong Z. X., Zhu M., Jiang C. Y., Hu J., Xing W. H., Ind. Eng. Chem. Res., 2017, 56(46), 13857CrossRefGoogle Scholar
  15. [15]
    Lu J. F., Jiang M. M., Wei M., Xu C. X., Wang S. F., Zhu Z., Qin F. F., Shi Z. L., Pan C. F., ACS Photonics, 2017, 4(10), 2419CrossRefGoogle Scholar
  16. [16]
    Sarkar S., Basak D., Cryst. Eng. Comm., 2013, 15(37), 7606CrossRefGoogle Scholar
  17. [17]
    Karunakaran C., Rajeswari V., Gomathisankar P., Mat. Sci. Semicon. Proc., 2011, 14(2), 133CrossRefGoogle Scholar
  18. [18]
    Zhang P., Shao C. L., Li X. H., Zhang M. Y., Zhang X., Sun Y. Y., Liu Y. C., J. Hazard Mater., 2012, 237, 331CrossRefGoogle Scholar
  19. [19]
    Li Z., Sun S., Xu X., Zheng B., Meng A., Catal. Commun., 2011, 12(10), 890CrossRefGoogle Scholar
  20. [20]
    Bazant P., Kuritka I., Munster L., Kalina L., Cellulose, 2015, 22(2), 1275CrossRefGoogle Scholar
  21. [21]
    Zheng Y. H., Zheng L. R., Zhan Y. Y., Lin X. Y., Zhneg Q., Wei K. M., Inorg. Chem., 2007, 46(17), 6980CrossRefGoogle Scholar
  22. [22]
    Gu C. D., Cheng C., Huang H. Y., Wong T. L., Wang N., Zhang T. Y., Cryst. Growth Des., 2009, 9(7), 3278CrossRefGoogle Scholar
  23. [23]
    Altintas Y., Emrah U. H., Caner D., J. Am. Ceram. Soc., 2013, 96(3), 766CrossRefGoogle Scholar
  24. [24]
    Chen C. Q., Zheng Y. H., Zhan Y. Y., Lin X. Y., Zheng Q., Wei K. M., Dalton Trans., 2011, 40(37), 9566CrossRefGoogle Scholar
  25. [25]
    Tang D. M., Liu G., Li F., Tan J., Liu C., Lu G. Q., Cheng H. M., J. Phys. Chem. C, 2009, 113(25), 11035CrossRefGoogle Scholar
  26. [26]
    Cheng Y., An L., Lan J., Gao F., Tan R. Q., Li X. M., Wang G. H., Mater. Res. Bull., 2013, 48(10), 4287CrossRefGoogle Scholar
  27. [27]
    Yang J. H., Wang J., Li X. Y., Lang J. H., Liu F. Z., Yang L. L., Zhai H. J., Gao M., Zhao X. T., J. Alloy. Compd., 2012, 528, 28CrossRefGoogle Scholar
  28. [28]
    Li Y., Zhang B., Zhao J., J. Alloy. Compd., 2014, 586, 663CrossRefGoogle Scholar
  29. [29]
    Guo Y. R., Yu F. D., Fang G. Z., Pan Q. J., J. Alloy. Compd., 2013, 552(3), 70CrossRefGoogle Scholar
  30. [30]
    ReejaJayan B., de la Rosa E., Sepulvedaguzman S., Rodriguez R. A., Yacaman M. J., J. Phys. Chem. C, 2008, 112(1), 240Google Scholar
  31. [31]
    Chen C. C., Ma W. H., Zhao J. C., Chem. Soc. Rev., 2010, 39, 4206CrossRefGoogle Scholar
  32. [32]
    Shan G., Zheng S., Chen S., Chen Y., Liu Y., Colloid Surface B, 2012, 94(6), 157CrossRefGoogle Scholar
  33. [33]
    Ren C. L., Yang B. F., Wu M., Xu J., Fu Z. P., Lv Y., Guo T., Zhao Y. X., Zhu C. Q., J. Hazard Mater., 2010, 182, 123CrossRefGoogle Scholar
  34. [34]
    Hu T., Li F., Yuan K., Chen Y. W., ACS Appl. Mater. Inter., 2013, 5(12), 5763CrossRefGoogle Scholar
  35. [35]
    Bouzid H., Faisal M., Harraz F. A., Alsayari S. A., Ismail A. A., Catal. Today, 2015, 252, 20CrossRefGoogle Scholar
  36. [36]
    Sangpour P., Hashemi F., Moshfegh A. Z., J. Phys. Chem. C, 2010, 114(33), 13955CrossRefGoogle Scholar
  37. [37]
    Gupta J., Mohapatra J., Bahadur D., Dalton Trans., 2017, 46(3), 685CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Renquan Guan
    • 1
  • Hongju Zhai
    • 1
    • 2
    Email author
  • Dewu Sun
    • 2
  • Junkai Zhang
    • 3
  • Yan Wang
    • 1
  • Jiaxin Li
    • 1
  1. 1.Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of EducationJilin Normal UniversityChangchunP. R. China
  2. 2.College of ChemistryJilin Normal UniversitySipingP. R. China
  3. 3.Key Laboratory of Functional Materials Physics and Chemistry, Ministry of EducationJilin Normal UniversityChangchunP. R. China

Personalised recommendations