Chemical Research in Chinese Universities

, Volume 35, Issue 2, pp 277–284 | Cite as

Lactic Acid Assisted Solvothermal Synthesis of BiOClxI1–x Solid Solutions as Excellent Visible Light Photocatalysts

  • Chenglin Duan
  • Jinling SongEmail author
  • Baoying Wang
  • Lun Li
  • Ruifen Wang
  • Bangwen Zhang


A series of BiOClxI1–x(x=0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0) photocatalysts was firstly prepared by means of a facile solvothermal route with the help of lactic acid. The measured results show that the morphologies of the as-prepared samples are similar sheets with different thickness and diameters. Thinner nanosheets assembled flower-like BiOCl0.5I0.5 solid solution exhibited the highest photocatalytic activity and stability among the prepared samples for the degradation of methylene blue(MB) and methyl orange(MO) under the illumination of visible light. The excellent photocatalytic properties of BiOCl0.5I0.5 could be attributed to the high specific surface area, the suitable band gap energy and the lower recombination rate of the electrons and holes. In addition, catalyst BiOCl0.5I0.5 was further used to degradate a more complicated mixed dye (MO+RhB+MB) system under visible light, displaying an excellent photocatalytic activity. Finally, the photocatalytic mechanism of catalyst BiOCl0.5I0.5 to degradate colorful dyes was proposed. The trapping experiments of active species indicated that the holes are the main active species for the degradation of the mixed dyes.


Solid solution Bismuth oxyhalide Mixed dye Solvothermal Photocatalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Mahadik M. A., An G. W., David S., Choi S. H., Cho M., Jang J. S., Appl. Sur. Sci., 2017, 426, 833CrossRefGoogle Scholar
  2. [2]
    Shanker U., Jassal M., Rani V., Environ. Chem. Lett., 2017, 15, 1CrossRefGoogle Scholar
  3. [3]
    Hong J. L., Otaki H., Emori M., J. Biosci. Bioeng., 2005, 100, 192CrossRefGoogle Scholar
  4. [4]
    Lü K., Zhang Q. Z., China Environ. Sci., 2018, 38, 852Google Scholar
  5. [5]
    Choi Y. I., Jung H. J., Shin W. G., Sohn Y., Appl. Sur. Sci., 2015, 356, 615CrossRefGoogle Scholar
  6. [6]
    Qi K., Cheng B., Yu J., Ho W., J. Alloy. Compd., 2017, 727, 792CrossRefGoogle Scholar
  7. [7]
    Xu B., Ahmed M. B., Zhou J. L., Altaee A., Wu M., Xu G., Chemosphere, 2017, 189, 717CrossRefGoogle Scholar
  8. [8]
    Khalid N. R., Majid A., Tahir M. B., Niaz N. A., Khalid S., Ceram. Int., 2017, 43, 14552CrossRefGoogle Scholar
  9. [9]
    Yoon H. J., Choi Y. I., Jang E. S., Sohn Y., J. Ind. Eng. Chem., 2015, 32, 137CrossRefGoogle Scholar
  10. [10]
    Lee S., Park Y., Pradhan D.. Sohn Y., J. Ind. Eng. Chem., 2016, 35, 231CrossRefGoogle Scholar
  11. [11]
    Choi Y. I., Kim Y. I., Cho D. W., Kang J. S., Leungb K. T., Sohn Y., RSC Adv., 2015, 5, 79624CrossRefGoogle Scholar
  12. [12]
    Li F. T., Wang Q., Wang X. J., Li B., Hao Y. J., Liu R. H., Zhao D. S., Appl. Catal. B: Environ., 2014, 151, 574CrossRefGoogle Scholar
  13. [13]
    Xie J., Cao Y. L., Jia D. Z., Li Y. Z., J. Colloid. Interf. Sci., 2017, 503, 115CrossRefGoogle Scholar
  14. [14]
    Zhao Q. H., Liu X. Y., Xing Y. X., Liu Z. L., Du C. F., J. Mater. Sci., 2017, 52, 2117CrossRefGoogle Scholar
  15. [15]
    Jia X. M., Cao J., Lin H. L., Zhang M. Y., Guo X. M., Chen S. F., Appl. Catal. B: Environ., 2017, 204, 505CrossRefGoogle Scholar
  16. [16]
    Huang Y. T., Ying Z. P., Zheng J. X., Zhuang S. G., Liu L., Feng W., Chem. J. Chinese Universities, 2018, 39(9), 2031Google Scholar
  17. [17]
    Zhao Z., Li R., Zhang X. C., Zhang C. M., Liu J. X., Wang Y. W., Wang Y. F., Fan C. M., Chem. J. Chinese Universities, 2018, 39(8), 1775Google Scholar
  18. [18]
    Jin X. L., Ye L. Q., Xie H. Q., Chen G., Coordin. Chem. Rev., 2017, 349, 84CrossRefGoogle Scholar
  19. [19]
    Ye L., Han C., Ma Z., Leng Y., Li J., Ji X., Bi D., Xie H., Huang Z., Chem. Eng. J., 2017, 307, 311CrossRefGoogle Scholar
  20. [20]
    Gao X. M., Dai Y., Fei J., Zhang Y., Fu F., Chem. J. Chinese Universities, 2018, 38(6), 1249Google Scholar
  21. [21]
    Wu S., Wang C., Cui Y., Hao W., Wang T., Brault P., Mater. Lett., 2011, 65, 1344CrossRefGoogle Scholar
  22. [22]
    Xiong J., Cheng G., Qin F., Wang R., Sun H., Chen R., Chem. Eng. J., 2013, 220, 228CrossRefGoogle Scholar
  23. [23]
    Wu Y., Zhou Z., Tuo Y., Huang Y., Shen S., Mater. Lett., 2013, 98, 261CrossRefGoogle Scholar
  24. [24]
    Qin X., Cheng H., Wang W., Huang B., Zhang X., Dai Y., Mater. Lett., 2013, 100, 285CrossRefGoogle Scholar
  25. [25]
    Wang P., Wu Y., Shi J., Liu D., Dong W., Appl. Surf. Sci., 2014, 292, 1077CrossRefGoogle Scholar
  26. [26]
    Zhang X., Ai Z. H., Jia F. L., Zhang L. Z., J. Phys. Chem. C, 2008, 112, 747CrossRefGoogle Scholar
  27. [27]
    Wang W., Huang F., Lin X., Scripta Mater., 2007, 56, 669CrossRefGoogle Scholar
  28. [28]
    Wang X., Zhang Z., Xue Y., Nie M., Li H., Dong W., Mater. Lett., 2014, 136, 30CrossRefGoogle Scholar
  29. [29]
    Chen Y., Zhao Y., Li J., Han X. G., Chem. J. Chinese Universities, 2017, 38(11), 2045Google Scholar
  30. [30]
    Gu Y. Y., Xiong Y. Q., Zhang X. X., Zhao L., Zhang S. C., Yan J., J. Cent. South Univ., 2018, 25, 1619CrossRefGoogle Scholar
  31. [31]
    Yamani Z. H., J. Nanosci. Nanotechno., 2018, 18, 4643CrossRefGoogle Scholar
  32. [32]
    Zhang G. Q., Cai L., Zhang Y. F., Wei Y., Eur. J., 2018, 24, 7434CrossRefGoogle Scholar
  33. [33]
    Yang J., Liang Y. J., Li K., Zhu Y. L., Liu S., Xu Q. R., Zhou W., J. Alloy Compd., 2017, 725, 1144CrossRefGoogle Scholar
  34. [34]
    Lin H. L., Ye H. F., Li X., Cao J., Chen S. F., Ceram. Int., 2014, 40, 9743CrossRefGoogle Scholar
  35. [35]
    Cheng J. S., Frezet L., Bonnet P., Wang C., Catal Lett., 2018, 148, 1281CrossRefGoogle Scholar
  36. [36]
    Zhang Y. Y., Sun X. G., Yang G. Z., Zhu Y. H., Si Y., Zhang J. M., Li Y. T., Mat. Sci. Semicon. Proc., 2014, 41, 193CrossRefGoogle Scholar
  37. [37]
    Pan J. B., Liu J. J., Zuo S. L., Khan U. A., Yu Y. C., Li B. S., Mater. Res. Bull., 2018, 103, 216CrossRefGoogle Scholar
  38. [38]
    Yang Y. F., Zhou F., Zhan S., Liu Y. J., Tian Y., He Q. C., Appl. Phys. A., 2017, 123, 29CrossRefGoogle Scholar
  39. [39]
    Liang J., Liu J., Xie Q., Bai S., Yu W.. Qian Y., J. Phys. Chem. B, 2005, 109, 9463CrossRefGoogle Scholar
  40. [40]
    Feng Y., Lu W., Zhang L., Bao X., Yue B., Lv Y., Shang X., Cryst. Growth Des., 2008, 8, 1426CrossRefGoogle Scholar
  41. [41]
    Huo Y., Jin Y., Zhang Y., J. Mol. Catal. A: Chem., 2010, 331, 15CrossRefGoogle Scholar
  42. [42]
    Di W., Willinger M. G., Ferreira R. A. S., Ren X., Lu S., Pinna N., J. Phys. Chem. C, 2008, 112, 18815CrossRefGoogle Scholar
  43. [43]
    Ren K., Zhang K., Liu J., Luo H., Huang Y., Yu X., Cryst. Eng. Comm., 2012, 14, 4384CrossRefGoogle Scholar
  44. [44]
    Zhao H., Zhang Y., Li G., Tian F., Tang H., Chen R., RSC Adv., 2016, 6, 7772CrossRefGoogle Scholar
  45. [45]
    Kim W. J., Pradhan D., Min B. K., Sohn Y., Appl. Catal. B: Environ., 2014, 147, 711CrossRefGoogle Scholar
  46. [46]
    Liu Y., Son W. J., Lu J., Huang B., Dai Y., M. Whangbo H., Chem-Eur. J., 2011, 17, 9342CrossRefGoogle Scholar
  47. [47]
    Jia Z. F., Wang F. M., Xin F., Zhang B. Q., Ind. Eng. Chem. Res., 2011, 50, 6688CrossRefGoogle Scholar
  48. [48]
    Dong F., Zhao W. R., Wu Z. B., Nanotechnology, 2008, 19, 365607CrossRefGoogle Scholar
  49. [49]
    Tang H., Berger H., Schmid P. E., Lévy F., Burri G., Solid State Commun., 1993, 87, 847CrossRefGoogle Scholar
  50. [50]
    Li J. J., Zhao W. F., Zhang G., Ma A. J., Chen W. X., Zhou H. W., Chem. J. Chinese Universities., 2018, 39(12), 2719Google Scholar
  51. [51]
    Dai X. J., Luo Y. S., Zhang W. D., Fu S.Y., Dalton Trans., 2010, 39, 3426CrossRefGoogle Scholar
  52. [52]
    Qu P., Zhao J., Shen T., Hidaka H., J. Mol. Catal. A: Chem., 1998, 129, 257CrossRefGoogle Scholar
  53. [53]
    Al-Qaradawi S., S. Salman R., J. Photochem. Photobiol. A, 2002, 148, 161CrossRefGoogle Scholar
  54. [54]
    Zhang D., Li J., Wang Q., Wu Q., J. Mater. Chem. A, 2013, 1, 8622CrossRefGoogle Scholar
  55. [55]
    Wang X. J., Yang W. Y., Li F. T., Zhao J., Liu R. H., Liu S. J., Li B., J. Hazard. Mater., 2015, 292,126Google Scholar
  56. [56]
    Sun X. G., Y. Zhang Y., Li C. M., Zhang Z. F., Peng Z., Si H. Y., Zhang J. M., Li Y. T., J. Alloy. Compd., 2015, 46, 254Google Scholar
  57. [57]
    Dutta D. P., Roy M., Tyagi A. K., Dalton Trans., 2012, 41, 10238CrossRefGoogle Scholar
  58. [58]
    Nethercot A. H. Jr., Phys. Rev. Lett., 1974, 33, 1088CrossRefGoogle Scholar
  59. [59]
    Cao J., Xu B.Y., Luo B. D., Lin H. L., Chen S. F., Catal. Commun., 2011, 257, 7083Google Scholar
  60. [60]
    Bandara J., Kiwi J., New J. Chem., 1999, 23, 717CrossRefGoogle Scholar
  61. [61]
    Meng S. G., Li D. Z., Sun M., Li W. J., Wang J. X., Chen J., Fu X. Z., Xiao G. C., Catal. Commun., 2011, 12, 972CrossRefGoogle Scholar
  62. [62]
    Zhang L. S., Wang K. H., Yip H. Y., Hu C., Yu J. C., Chan C. Y., Wong P. K., Environ. Sci. Technol., 2010, 44, 1392CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Chenglin Duan
    • 1
  • Jinling Song
    • 1
    Email author
  • Baoying Wang
    • 1
  • Lun Li
    • 1
  • Ruifen Wang
    • 1
  • Bangwen Zhang
    • 1
  1. 1.School of Material and MetallurgyInner Mongolia University of Science and TechnologyBaotouP. R. China

Personalised recommendations