Chemical Research in Chinese Universities

, Volume 35, Issue 2, pp 285–291 | Cite as

Production of Bio-hydrogen Using Bio-oil as a Potential Biomass-derived Renewable Feedstock

  • Junxu Liu
  • Lijuan Zhu
  • Shengfei Wang
  • Yulan Wang
  • Yuting He
  • Quanxin LiEmail author


The bio-oil derived from pyrolysis of straw can be selectively converted into high-purity hydrogen by coupling three steps: (i) steam reforming(SR) of different bio-oils, (ii) water-gas shift(WGS), and (iii) the removal of CO2. The catalytic SR reaction over the NiLaTiAl catalyst, coupled with a low-temperature WGS reaction with the CuZnAl catalyst, promoted the conversion of various oxygen-containing organic compounds in the bio-oil into hydrogen and carbon dioxide. Under the optimized condition, light bio-oil achieved the highest conversion(99.8%, molar fraction), with a high hydrogen yield of 16.4%(mass fraction) and a H2 purity of 99.94%(volume fraction). The carbon deposition on the NiLaTiAl catalyst was the main factor caused catalyst deactivation. Production of hydrogen from different bio-oil model compounds was also investigated in detail.


Bio-oil High-purity hydrogen Integrated catalytic process Oxygenated organic compound 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_8268_MOESM1_ESM.pdf (457 kb)
Supplementary material, approximately 460 KB.


  1. [1]
    Jin F., Fan M., Jia Q., Li Q., Chinese J. Chem. Phys., 2017, 30(3), 348Google Scholar
  2. [2]
    Zhu L., Jin F., Fan M., Liu J., Chang R., Jia Q., Tang C., Li Q., Chem. Eng. Technol., 2018, 41(5), 1027Google Scholar
  3. [3]
    Chang R., Zhu L., Jin F., Fan M., Liu J., Jia Q., Tang C., Li Q., J. Chem. Technol. Biotechnol., 2018, 93, 3292Google Scholar
  4. [4]
    Tang C., Zhu L., Fan M., Li Q., Chinese J. Chem. Phys., 2018, 31(3), 1Google Scholar
  5. [5]
    Czernik S., Evans R., French R., Catal. Today, 2007, 129(3), 265Google Scholar
  6. [6]
    Guo L. J., Lu Y. J., Zhang X. M., Ji C. M., Guan Y., Pei A. X., Catal. Today, 2007, 129(3), 275Google Scholar
  7. [7]
    Jain I. P., Int. J. Hydrogen Energy, 2009, 34(17), 7368Google Scholar
  8. [8]
    Wu X., Fan M., Li Q., Chinese J. Chem. Phys., 2017, 30(4), 479Google Scholar
  9. [9]
    Takanabe K., Aika K. I., Seshan K., Lefferts L., J. Catal., 2004, 227(1), 101Google Scholar
  10. [10]
    Wang S. R., Liang T., Ru B., Guo X. J., Chem. Res. Chinese Universities, 2013, 29(4), 782Google Scholar
  11. [11]
    Jia, Q., Zhu L., Fan M., Li, Q., Chinese J. Org. Chem., 2018, 38, 2101Google Scholar
  12. [12]
    Navarro R. M., Peña M. A., Fierro J. L. G., Chem. Rev., 2007, 107(10), 3952Google Scholar
  13. [13]
    Jiang P., Wu X., Liu J., Li Q., Chinese J. Chem. Phys., 2016, 29(5), 635Google Scholar
  14. [14]
    Kapdan I. K., Kargi F., Enzyme Microb. Tech., 2006, 38(5), 569Google Scholar
  15. [15]
    Haryanto A., Fernando S., Murali N., Adhikari S., Energy & Fuels, 2005, 19(5), 2098Google Scholar
  16. [16]
    Vagia E. C., Lemonidou A. A., Int. J. Hydrogen Energy, 2007, 32(2), 212Google Scholar
  17. [17]
    Galdámez J. R., García L., Bilbao R., Energy & Fuels, 2005, 19(3), 1133Google Scholar
  18. [18]
    Seyedeyn-Azad F., Salehi E., Abedi J., Harding T., Fuel Process. Technol., 2011, 92(3), 563Google Scholar
  19. [19]
    Salehi E., Azad F. S., Harding T., Abedi J., Fuel Process. Technol., 2011, 92(12), 2203Google Scholar
  20. [20]
    Shejale A. D., Yadav G. D., Ind. Eng. Chem. Res., 2018, 57(14), 4785Google Scholar
  21. [21]
    Kan T., Xiong J., Li X., Ye T., Yuan L., Torimoto Y., Yamamoto M., Li Q., Int. J. Hydrogen Energy, 2010, 35(2), 518Google Scholar
  22. [22]
    Leng S., Wang X., He X., Liu L., Liu Y. E., Zhong X., Zhuang G., Wang J. G., Catal. Commun., 2013, 41, 34Google Scholar
  23. [23]
    Hong Y. K., Lee D. W., Eom H. J., Lee K. Y., Appl. Catal. B, 2014, 150/151, 438Google Scholar
  24. [24]
    Gunawan R., Li X., Lievens C., Gholizadeh M., Chaiwat W., Hu X., Mourant D., Bromly J., Li C. Z., Fuel, 2013, 111, 709Google Scholar
  25. [25]
    Mazumder J., de Lasa H., Appl. Catal. B, 2014, 160/161, 67Google Scholar
  26. [26]
    Remón J., Medrano J. A., Bimbela F., García L., Arauzo J., Appl. Catal. B, 2013, 132/133, 433Google Scholar
  27. [27]
    Ye T., Yuan L., Chen Y., Kan T., Tu J., Zhu X., Torimoto Y., Yamamoto M., Li Q., Catal. Lett., 2009, 127(3), 323Google Scholar
  28. [28]
    Xue H., Liu J., Xia T., Li Q., Chinese J. Chem. Phys., 2016, 29(4), 481Google Scholar
  29. [29]
    Liu J., Jin F., Fan M., Zhu L., Tang C., Chang R., Jia Q., Li Q., Fuel, 2018, 226, 322Google Scholar
  30. [30]
    Fan M., Ge S., Zhang Z., Xie Y., Li Q., Chinese J. Chem. Phys., 2018, 31(5), 725Google Scholar
  31. [31]
    Wang S., Gu Y., Liu Q., Yao Y., Guo Z., Luo Z., Cen K., Fuel Process. Technol., 2009, 90(5), 738Google Scholar
  32. [32]
    Guo X., Wang S., Guo Z., Liu Q., Luo Z., Cen K., Appl. Energ., 2010, 87(9), 2892Google Scholar
  33. [33]
    Nogueira F. G. E., Assaf P. G. M., Carvalho H. W. P., Assaf E. M., Appl. Catal. B, 2014, 160/161, 188Google Scholar
  34. [34]
    Rioche C., Kulkarni S., Meunier F. C., Breen J. P., Burch R., Appl. Catal. B, 2005, 61(1), 130Google Scholar
  35. [35]
    Elliott D. C., Hart T. R., Neuenschwander G. G., Rotness L. J., Zacher A. H., Environ. Prog. Sustain., 2009, 28(3), 441Google Scholar
  36. [36]
    Zheng J. L., J. Anal. Appl. Pyrol., 2007, 80(1), 30Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Junxu Liu
    • 1
  • Lijuan Zhu
    • 1
  • Shengfei Wang
    • 1
  • Yulan Wang
    • 1
  • Yuting He
    • 1
  • Quanxin Li
    • 1
    Email author
  1. 1.Key Laboratory of Urban Pollutant Conversion of Chinese Academy of Sciences, Anhui Key Laboratory of Biomass Clean Energy, Department of Chemical PhysicsUniversity of Science & Technology of ChinaHefeiP. R. China

Personalised recommendations