Advertisement

PhIO-mediated Synthesis of Ketones from Alkynes and Alkenes

  • Ying WeiEmail author
  • Xiangping Zheng
  • Xinmiao Xie
Article
  • 4 Downloads

Abstract

A facile and efficient method for the preparation of methyl ketones was developed in the reaction of alkynes and alkenes with PhIO-BF3∙Et2O. The reaction features mild conditions, short time and metal-free catalyst. The possible mechanism for the formation of methyl ketones was proposed. H2O functions as both a nucleophile and an oxygen source.

Keywords

Alkyne Alkene Ketone Hydration reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alonso F., Beletskaya I. P., Yus M., Chem. Rev., 2004, 104, 3079CrossRefGoogle Scholar
  2. [2]
    Hintermann L., Labonne A., Synthesis, 2007, 1121Google Scholar
  3. [3]
    Kutscheroff M., Chem. Ber., 1884, 17, 13CrossRefGoogle Scholar
  4. [4]
    Nishizawa M., Skwarczynski M., Imagawa H., Sugihara T., Chem. Lett., 2002, 31, 12CrossRefGoogle Scholar
  5. [5]
    Ghosh N., Nayak S., Sahoo A. K., J. Org. Chem., 2011, 76, 500CrossRefGoogle Scholar
  6. [6]
    Wang D., Cai R., Sharma S., Jirak J., Thummanapelli S. K., Akhmedov N. G., Zhang H., Liu X., Petersen J. L., Shi X., J. Am. Chem. Soc., 2012, 134, 9012CrossRefGoogle Scholar
  7. [7]
    Hiscox W., Jennings P. W., Organometallics, 1990, 9, 1997CrossRefGoogle Scholar
  8. [8]
    Jennings P. W., Hartman J. W., Hiscox W. C., Inorg. Chim. Acta, 1994, 222, 317CrossRefGoogle Scholar
  9. [9]
    Wu X. F., Bezier D., Darcel C., Adv. Synth. Catal., 2009, 351, 367CrossRefGoogle Scholar
  10. [10]
    McDonald R. I., Liu G., Stahl S. S., Chem. Rev., 2011, 111, 2981CrossRefGoogle Scholar
  11. [11]
    Mitsudome T., Yoshida S., Mizugaki T., Jitsukawa K., Kaneda K., Angew. Chem. Int. Ed., 2013, 52, 5961CrossRefGoogle Scholar
  12. [12]
    Hirabayashi T., Okimoto Y., Saito A., Morita M., Sakaguchi S., Ishii Y., Tetrahedron, 2006, 62, 2231CrossRefGoogle Scholar
  13. [13]
    Thuong M. B. T., Mann A., Wagner A., Chem. Commun., 2012, 48, 434CrossRefGoogle Scholar
  14. [14]
    Jin X., Oishi, T., Yamaguchi K., Mizuno N., Chem. Eur. J., 2011, 17, 1261CrossRefGoogle Scholar
  15. [15]
    Harman W. D., Dobson J. C., Taube H., J. Am. Chem. Soc., 1989, 111, 3061CrossRefGoogle Scholar
  16. [16]
    Tachinami T., Nishimura T., Ushimaru R., Noyori R., Naka H., J. Am. Chem. Soc., 2013, 135, 50CrossRefGoogle Scholar
  17. [17]
    Hintermann L., Labonne A., Synthesis, 2007, 1121Google Scholar
  18. [18]
    Ibrahim N., Vilhelmsen M. H., Pernpointner M., Rominger F., Hashmi A. S. K., Organometallics, 2013, 32, 2576CrossRefGoogle Scholar
  19. [19]
    Zhdankin V. V., J. Org. Chem., 2011, 76, 1185CrossRefGoogle Scholar
  20. [20]
    Yoshimura A., Zhdankin V. V., Chem. Rev., 2016, 116, 3328CrossRefGoogle Scholar
  21. [21]
    Wang X., Studer A., Acc. Chem. Res., 2017, 50, 1712CrossRefGoogle Scholar
  22. [22]
    Mo D. L., Dai L. X., Hou X. L., Tetrahedron Lett., 2009, 50, 5578CrossRefGoogle Scholar
  23. [23]
    Barluenga J., Lonzi G., Riesgo L., Miguel Tomás López L. A., J. Am. Chem. Soc., 2011, 133, 18138CrossRefGoogle Scholar
  24. [24]
    He Z., Zhang R., Hu M., Li L., Ni C., Hu J., Chem. Sci., 2013, 4, 3478CrossRefGoogle Scholar
  25. [25]
    Sohmiya H., Kimura T., Bauchat P., Fujita M., Ando T., Chem. Lett., 1991, 1391Google Scholar
  26. [26]
    Wang L., Li P., Yan J., Wu Z., Tetrahedron Lett., 2003, 44, 4685CrossRefGoogle Scholar
  27. [27]
    Haddach M., McCarthy J. R., Tetrahedron Lett., 1999, 40, 3109CrossRefGoogle Scholar
  28. [28]
    Trécourt F., Breton G., Bonnet V., Mongin F., Marsais F., Quéguiner G., Tetrahedron, 2000, 56, 1349CrossRefGoogle Scholar
  29. [29]
    Xu C. F., Xu M., Jia Y. X., Li C. Y., Org. Lett., 2011, 13, 1556CrossRefGoogle Scholar
  30. [30]
    Chikashita H., Ide H., Itoh K., J. Org. Chem., 1986, 51, 5400CrossRefGoogle Scholar
  31. [31]
    Zhou C. Y., Chan P. W. H., Che C. M., Org. Lett., 2006, 8, 325CrossRefGoogle Scholar
  32. [32]
    Xia Y., Qu S., Xiao Q., Wang Z. X., Qu P., Chen L., Liu Z., Tian L., Huang Z., Zhang Y., Wang J., J. Am. Chem. Soc., 2013, 135, 13502CrossRefGoogle Scholar
  33. [33]
    Sniady A., Wheeler K. A., Dembinski R., Org. Lett., 2005, 7, 1769CrossRefGoogle Scholar
  34. [34]
    Brown R. C. D., Angew. Chem., Int. Ed., 2005, 44, 850CrossRefGoogle Scholar
  35. [35]
    Ochiai M., Miyamoto K., Yokota Y., Suefuji T., Shiro M., Angew. Chem., Int. Ed., 2005, 44, 75CrossRefGoogle Scholar
  36. [36]
    Miyamoto K., Tada N., Ochiai M., J. Am. Chem. Soc., 2007, 129, 2772CrossRefGoogle Scholar
  37. [37]
    Souto J. A., Becker P., Iglesias Á., Mun~iz K., J. Am. Chem. Soc., 2012, 134, 15505CrossRefGoogle Scholar
  38. [38]
    Saito A., Taniguchi A., Kambara Y., Hanzawa Y., Org. Lett., 2013, 15, 2672CrossRefGoogle Scholar
  39. [39]
    Tokunaga M., Suzuki T., Koga N., Fukushima T., Horiuchi A., Wakatsuki Y., J. Am. Chem. Soc., 2001, 123, 11917CrossRefGoogle Scholar
  40. [40]
    Brenzovich Jr. W. E., Angew. Chem. Int. Ed., 2012, 51, 8933CrossRefGoogle Scholar
  41. [41]
    Rao K. T. V., Prasad P. S. S., Lingaiah N., Green Chem., 2012, 14, 1507CrossRefGoogle Scholar
  42. [42]
    Ochiai M., Sumi K., Nagao Y., Fujita E., Arimoto M., Yamaguchi H., J. Chem. Soc., Chem. Commun., 1985, 697Google Scholar
  43. [43]
    Sromek A. W., Rubina M., Gevorgyan V., J. Am. Chem. Soc., 2005, 127, 10500CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Molecular Systems and Organic Devices(CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials(IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM)Nanjing University of Posts & TelecommunicationsNanjingP. R. China

Personalised recommendations