Chemical Research in Chinese Universities

, Volume 35, Issue 2, pp 292–298 | Cite as

Comparative Study of Electrochemical Performance and Microbial Flora in Microbial Fuel Cells by Using Three Kinds of Substrates

  • Yu ZhaoEmail author
  • Lei Fan
  • Donghua Yang
  • Zhishuai Dong
  • Yuxue Wang
  • Xia An


This work aimed to investigate the distinct electrochemical performance and microbial flora of microbial fuel cells(MFCs) in relation to different single hazardous fed fuels. Three replicate MFCs were inoculated with the same microbial consortium from a coking wastewater treatment plant, wherein ammonium chloride(ammonium chloride-fed MFC, N-MFC), phenol(phenol-fed MFC, P-MFC) and potassium sulphide(potassium sulphide-fed MFC, S-MFC) were the sole substrates and main components of real coking wastewater. With initial concentrations of ammonium chloride, phenol and potassium sulphide of 0.75, 0.60 and 0.55 g/L, the removal efficiencies reached 95.6%, 90.6% and 99.9%, respectively, whereas the peak output power densities totalled 697, 324 and 1215 mW/m2. Microbial community analysis showed that the respective addition of substrate substantially altered the microbial community structure of anode biofilm, resulting in changes in relative abundance and emergence of new strains and further affecting the electrochemical properties of MFCs. The chemical oxygen demand(COD) removal efficiency of real coking wastewater, in which the inoculum was the combined biomass from the three MFCs, reached 82.3%.


Comparison of microbial flora Comparison of electrochemical performance Sole substrate Microbial fuel cell(MFC) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_8261_MOESM1_ESM.pdf (273 kb)
Comparative study of electrochemical performance and microbial flora in microbial fuel cells byusing three kinds of substrates, respectively


  1. [1]
    Rabaey K., Verstraete W., Trends Biotechnol., 2005, 23(6), 291CrossRefPubMedGoogle Scholar
  2. [2]
    Bond D. R., Holmes D. E., Tender L. M., Lovley D. R., Science, 2002, 295(5554), 483CrossRefPubMedGoogle Scholar
  3. [3]
    Min B., Kim J. R., Oh S. E., Regan J. M., Logan B. E., Water Res., 2005, 39(20), 4961CrossRefPubMedGoogle Scholar
  4. [4]
    Min B., Logan B. E., Environ. Sci. Technol., 2004, 38(21), 5809CrossRefPubMedGoogle Scholar
  5. [5]
    Mohana K. G., Venkata M. S., Sarma P. N., J. Hazard. Mater., 2010, 177(1–3), 487Google Scholar
  6. [6]
    Oh S. E., Logan B. E., Water Res., 2005, 39(19), 4673CrossRefPubMedGoogle Scholar
  7. [7]
    Rodrigo M. A., Cañizares P., Lobato J., Paz R., Sáez C., Linares J. J., J. Power Sources, 2007, 169(1), 198CrossRefGoogle Scholar
  8. [8]
    Huang L., Logan B. E., Appl. Microbial. Biot., 2008, 80(2), 349CrossRefGoogle Scholar
  9. [9]
    Liu R., Gao C., Zhao Y., Wang A., Lu S., Wang M., Maqbool F., Huang Q., Bioresource Technol., 2012, 123, 86CrossRefGoogle Scholar
  10. [10]
    Luo Y., Zhang R., Liu G., Li J., Li M., Zhang C., J. Hazard. Mater., 2010, 176(1–3), 759CrossRefPubMedGoogle Scholar
  11. [11]
    Solanki K., Subramanian S., Basu S., Bioresource Technol., 2013, 131, 564CrossRefGoogle Scholar
  12. [12]
    Song H., Guo W., Liu M., Sun J., Water Sci. Technol., 2013, 68(12), 2599CrossRefPubMedGoogle Scholar
  13. [13]
    Venkata M. S., Mohana K. G., Puruhotham R. B., Saravanan R., Sarma P. N., Biochem. Eng. J., 2008, 39(1), 121CrossRefGoogle Scholar
  14. [14]
    Zhang C., Li M., Liu G., Luo H., Zhang R., J. Hazard. Mater., 2009, 172(1), 465CrossRefPubMedGoogle Scholar
  15. [15]
    Zhang C., Liu G., Zhang R., Luo H., J. Environ. Sci. Heal. A, 2010, 45(2), 250CrossRefGoogle Scholar
  16. [16]
    Huang L. P., Yang X. H., Quan X., Chen J. W., Yang F. L., J. Chem. Technol. Biot., 2010, 85(5), 621CrossRefGoogle Scholar
  17. [17]
    Arredondo M. R., Kuntke P., Jeremiasse A. W., Sleutels T. H. J. A., Buisman C. J. N., Ter Heijne A., Environ. Sci. Wat. Res., 2015, 1(1), 22CrossRefGoogle Scholar
  18. [18]
    Zhang X., Zhu F., Chen L., Zhao Q., Tao G., Bioresource Technol., 2013, 146, 161CrossRefGoogle Scholar
  19. [19]
    Zhou X. T., Qu Y. P., Kim B. H., Du Y., Wang H. M., Li H. N., Dong Y., He W. H., Liu J., Feng Y. J., RSC Adv., 2015, 5(86), 70371CrossRefGoogle Scholar
  20. [20]
    Jayashree C., Arulazhagan P., Kumar S. A., Kaliappan S., Yeom I. T., Banu J. R., Biomass Bioenerg., 2014, 69, 249CrossRefGoogle Scholar
  21. [21]
    Zhu X., Ni J., Wei J., Chen P., Electrochim. Acta, 2011, 56(25), 9439CrossRefGoogle Scholar
  22. [22]
    Cai J., Zheng P., Bioresource Technol., 2013, 128, 760CrossRefGoogle Scholar
  23. [23]
    Sun M., Mu Z., Chen Y., Sheng G., Liu X., Chen Y., Zhao Y., Wang H., Yu H., Wei L., Ma F., Environ. Sci. Technol., 2009, 43(9), 3372CrossRefPubMedGoogle Scholar
  24. [24]
    Zhong L., Zhang S., Wei Y., Bao R., Biochem. Eng. J., 2017, 124, 6CrossRefGoogle Scholar
  25. [25]
    Luo Y., Zhang R. D., Liu G. L., Li J., Li M. C., Zhang C. P., J. Hazard Mater., 2010, 176(1–3), 759CrossRefPubMedGoogle Scholar
  26. [26]
    Chen S. S., Zhang C. P., Liu G. L., Zhang R. D., Li M. C., Quan X. C., Environ. Sci., 2010, 31(9), 2148Google Scholar
  27. [27]
    Zhang C. P., Li M. C., Liu G. L., Luo H. P., Zhang R. D., J. Hazard. Mater., 2009, 172(1), 465CrossRefPubMedGoogle Scholar
  28. [28]
    Minhalma M., Maria N. P., J. Membrane Sci., 2004, 242(1/2), 87Google Scholar
  29. [29]
    Logan B. E., Hamelers B., Rozendal R., Schroder U., Keller J., Freguia S., Aelterman P., Verstraete W., Rabaer K., Environ. Sci. Technol., 2006, 40(17), 5181CrossRefGoogle Scholar
  30. [30]
    National Environmental Protection Agency, Water Quality Analysis, China Environmental Science Press, Beijing, 2009, 535Google Scholar
  31. [31]
    Ma J., Wang Z., Li X., Wang Y., Wu Z., Environ. Prog. Sustain., 2014, 33, 290CrossRefGoogle Scholar
  32. [32]
    Ha P. T., Tae B., Chang I. S., Energ. Fuel., 2007, 22(1), 164CrossRefGoogle Scholar
  33. [33]
    Kim G. T., Webster G., Wimpenny J. W. T., Kim B. H., Kim H. J., Weightman A. J., J. Appl. Microbiol., 2006, 101(3), 698CrossRefPubMedGoogle Scholar
  34. [34]
    Zhang Y., Min B., Huang L., Angelidaki I., Bioresource Technol., 2011, 102(18), 1166CrossRefGoogle Scholar
  35. [35]
    Zhen H., Jin J. K., Yan B. W., Yue L. H., Florian M., Kennethh N., Environ. Sci. Technol., 2009, 43, 3391CrossRefGoogle Scholar
  36. [36]
    Boll M., Fuchs G., Biol. Chem., 2005, 386(10), 989PubMedGoogle Scholar
  37. [37]
    Sun M., Mu Z. X., Chen Y. P., Sheng G. P., Liu X. W., Chen Y. Z., Zhao Y., Wang H. L., Yu H. Q., Li W., Ma F., Environ. Sci. Technol., 2009, 43(9), 3372CrossRefPubMedGoogle Scholar
  38. [38]
    Gralnick J. A., Newman D. K., Extracellular Respiration Mol. Microbiol., 2007, 65(1), 1PubMedGoogle Scholar
  39. [39]
    Hernandez M. E., Kappler A., Newman D. K., Appl. Environ. Microb., 2004, 70(2), 921CrossRefGoogle Scholar
  40. [40]
    Raghavulu S. V., Babu P. S., Goud R. K., Subhash G. V., Srikanth S., Mohan S. V., RSC Adv., 2012, 2(2), 677CrossRefGoogle Scholar
  41. [41]
    Srikanth S., Mohan S. V., Bioresource Technol., 2012, 123, 480CrossRefGoogle Scholar
  42. [42]
    Velvizhi G., Babu P. S., Mohanakrishna G., Srikanth S., Mohan S. V., RSC Adv., 2012, 2(4), 1379CrossRefGoogle Scholar
  43. [43]
    Chen J. F., Hu Y. Y., Zhang L. H., Huang W. T., Sun J., Bioresource Technol., 2017, 238, 273CrossRefGoogle Scholar
  44. [44]
    Schilirò T., Tommasi T., Armato C., Hidalgo D., Traversi D., Bocchini S., Gilli G., Pirri C. F., Energy, 2016, 106, 277CrossRefGoogle Scholar
  45. [45]
    Chen J. F., Zhang L. H., Hu Y. Y., Huang W. T., Niu Z. Y., Sun J., Bioresource Technol., 2017, 241, 220CrossRefGoogle Scholar
  46. [46]
    Jayapriya J., Ramamurthy V., Can. J. Chem. Eng., 2014, 92(4), 610CrossRefGoogle Scholar
  47. [47]
    Lovley D. R., Coates J. D., Blunt-Harris E. L., Phillips F. J. P., Woodward J. C., Nature, 1996, 382(6590), 445CrossRefGoogle Scholar
  48. [48]
    Xing D., Cheng S., Logan B. E., Regan J. M., Appl. Microbiol. Biotechnol., 2010, 85(5), 1575CrossRefPubMedGoogle Scholar
  49. [49]
    Xiong H., Zou D., Zhou D., Dong S., Wang J., Rittmann B. E., Chem. Eng. J., 2017, 316, 7CrossRefGoogle Scholar
  50. [50]
    Qiu G., Song Y. H., Zeng P., Duan L., Xiao S., Bioresour. Technol., 2013, 142, 52CrossRefPubMedGoogle Scholar
  51. [51]
    Wang G. H., Cheng C. Y., Liu M. H., Chen T. Y., Hsieh M. H., Chung Y. C., Sensors., 2016, 16(8), 1272CrossRefGoogle Scholar
  52. [52]
    Said G., Antonia P. R., Francisco J. H. F., Sihem H. K., Francisco M. R., Joaquín Q. M., Chem. Eng. Technol., 2015, 38(9), 1511CrossRefGoogle Scholar
  53. [53]
    Stefano F., Ee H. T., Nico B., Kar M. L., Jurg K., Korneel R., Bioresource Technol., 2010, 101, 1233CrossRefGoogle Scholar
  54. [54]
    Ding J., Lu Z. Y., Liang F., Ding Z. W., Cheng M. Y., Shuk H., Raymond J. Z., Water Res., 2007, 110, 112CrossRefGoogle Scholar
  55. [55]
    Shun Z. Y., Lu C. H., Wang Y. Q., Yang G. Q., Li Z., Pei H., Int. J. Syst. Evol. Micr., 2013, 63(7), 2618Google Scholar
  56. [56]
    Liang J., Li W., Zhang H. L., Jiang X. B., Wang L. J., Liu X. D., Shen J. Y., Chem. Eng. J., 2018, 338, 176CrossRefGoogle Scholar
  57. [57]
    Wang L., Wu Y. C., Zheng Y., Liu L. D., Zhao F., RSC Adv., 2015, 5(69), 56430CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yu Zhao
    • 1
    Email author
  • Lei Fan
    • 1
  • Donghua Yang
    • 1
  • Zhishuai Dong
    • 1
  • Yuxue Wang
    • 1
  • Xia An
    • 1
  1. 1.College of Chemistry and Chemical EngineeringTaiyuan University of TechnologyTaiyuanP. R. China

Personalised recommendations