Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 2, pp 200–208 | Cite as

A New Tetrasubstituted Imidazole Based Difunctional Probe for UV-spectrophotometric and Fluorometric Detecting of Fe3+ Ion in Aqueous Solution

  • Yanpeng Shi
  • Xiaodong Chen
  • Zhiming Mi
  • Ran Zheng
  • Jie Fan
  • Qiang Gu
  • Yumin ZhangEmail author
Article
  • 6 Downloads

Abstract

Two new compounds, 4-(2-bromophenyl-4,5-diphenyl-imidazol-1-yl)aniline(probe 1) and 4-[2,4,5-tris(4-bromophenyl)-1H-imidazol-1-yl]aniline(probe 2), were synthesized via a soft and high-efficiency one-pot microwave- assisted method under solvent-free conditions. Their sensing to different metal ions was detected by UV spectrophotometry and fluorescence spectrometry. Probe 2 revealed highly selective and sensitive UV and fluorescence response to Fe3+ ion. Upon the addition of Fe3+ ion, probe 2 showed obvious color change of the solution, conspicuous absorbance enhancement and relatively quick fluorescence quenching. The detection limit for Fe3+ ion was respectively calculated to be 0.72 μmol/L(fluorescent detection) and 0.48 μmol/L(UV-spectrum detection). Also, probe 2 was bound by Fe3+ ion to form a 1:1 complex. Moreover, preliminary application of probe 2 for detecting Fe3+ ion in aqueous solution was attempted, and satisfying results were obtained.

Keywords

Fe3+ ion probe Imidazole Fluorescence quenching Absorbance enhancement Microwave synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_8244_MOESM1_ESM.pdf (897 kb)
A New Tetrasubstituted Imidazole Based Difunctional Probe for UV-spectrophotometric and Fluorometric Detecting of Fe3+ Ion in Aqueous Solution

References

  1. [1]
    Aisen P., Wessling-Resnick M., Leibold E. A., Curr. Opin. Cjem. Biol. USA Universities, 1999, 3(2), 200Google Scholar
  2. [2]
    Touati D., Arch. Biochem. Biophys., 2000, 373(1), 1Google Scholar
  3. [3]
    Bonda D. J., Lee H. G., Blair J. A., Zhu X., Perry G., Smith M. A., Metallomics. Western Reserve University, 2011, 3(3), 267Google Scholar
  4. [4]
    Han J., Zhou Z., Bu X., Zhu S., Zhang H., Sun H., Yang B., Analyst Chinese Universities, 2013, 138(12), 3402Google Scholar
  5. [5]
    Suryawanshi S. B., Mahajan P. G., Bodake A. J., Spectrochim. Acta. A., Kolekar. G. B., Patil. S. R., Spectrochim. Acta A, 2017, 183, 232Google Scholar
  6. [6]
    Mohammed A. J., World Journal of Pharmace utical Research, 2015, 5(3), 129Google Scholar
  7. [7]
    Hao X., Wang D., Wang P., Wang Y., Zhou D., Environ. Monit. Assess. Chinese Universities, 2016, 188(1), 1Google Scholar
  8. [8]
    Luo A., Wang H. Q., Wang Y. Y., Huang Q., Zhang Q., Spectrochim. Acta A, 2016, 168, 37Google Scholar
  9. [9]
    Wang K. P., Lei Y., Zhang S. J., Zheng W. J., Chen J. P., Zhang Q., Zhang Y. B., Hu Z. Q., Sensor Actuat B: Chem., 2017, 252, 1140Google Scholar
  10. [10]
    Halliwell B., Gutteridge J. M., Method Enzymol., 1990, 186(186), 1Google Scholar
  11. [11]
    Halliwell B., Gutteridge J. M., Febs. Lett., 1992, 307(1), 108Google Scholar
  12. [12]
    Gaeta A., Hider R. C., Brit. J. Pharmacol., 2010, 146(8), 1041Google Scholar
  13. [13]
    Molina-Holgado F., Hider R. C., Gaeta A., Williams R., Francis P., Biometals, 2007, 20(3/4), 639Google Scholar
  14. [14]
    Bacon B. R., Britton R. S., Hepatology, 1990, 11(1), 127Google Scholar
  15. [15]
    Kehrer J. P., Toxicolog., 2000, 149(1), 43Google Scholar
  16. [16]
    Kowdley K. V., Gastroenterology, 2004, 127(Suppl. 1), S79Google Scholar
  17. [17]
    Valko M., Rhodes C. J., Moncol J., Izakovic M., Mazur. M., Chem-Biol Interact., 2006, 160(1), 1Google Scholar
  18. [18]
    Valko M., Leibfritz D., Moncol J., Int. J. Biochem. Cell B, 2007, 39(1), 44Google Scholar
  19. [19]
    Nayab P. S., Shkir M., Sensor Actuat. B: Chem., 2017, 245Google Scholar
  20. [20]
    Zhou Y., Yoon J., Chem. Soc. Rev., 2011, 40(7), 3416Google Scholar
  21. [21]
    Gao Y., Liu H., Liu Q., Wang W., Tetrahedron Lett., 2016, 57(17), 1852Google Scholar
  22. [22]
    Kumar N., Bhalla V., Kumar M., Analyst, 2014, 139(3), 543Google Scholar
  23. [23]
    Saleem M., Lee K. H., RSC Adv., 2015, 5(88), 72150Google Scholar
  24. [24]
    Hu Z. Q., Feng Y. C., Huang H. Q., Ding L., Wang X. M., Lin C. S., Sensor Actuat. B: Chem., 2011, 156(1), 54Google Scholar
  25. [25]
    Gupta V. K., Mergu N., Singh A. K., Sensor Actuat. B: Chem., 2015, 220, 420Google Scholar
  26. [26]
    Luxami V., Renukamal., Paul K., Kumar S., RSC Adv., 2013, 3(24), 9189Google Scholar
  27. [27]
    Fan S. M., Yang W. G., Hao J. F., Li H. J., Zhao W. D., Zhang J., Hu Y. H., J. Photoch. Photobio. A, 2016, 328, 129Google Scholar
  28. [28]
    Zhao J. X., Gao Q, Zhang F. F., Sun W., Bai Y. J., Polycycl. Aromat. Comp., 2018, 38(1), 13Google Scholar
  29. [29]
    Yan F. Y, Zheng T. C., Guo S S., Shi D. C., Han Z. Y., Zhou S. Y. S., Chen L., Spectrochim Acta B, 2015, 151, 881Google Scholar
  30. [30]
    Balalaie S., Hashemi M. M., Akhbari M., Tetrahedron Letters, 2003, 44(8), 1709Google Scholar
  31. [31]
    Katsuhiro S., Yoriko M., Seiji N., Kazunari N., Tomoki K.,Yoshiyuki O., Aryl or Heteroaryl Fused Imidazole Compounds as Indlammatory and Analgesic, US7141580, 2006Google Scholar
  32. [32]
    Bereket G., Hür E., Öğretir C., J. Mol. Struc.-Theochem., 2002, 578(1), 79Google Scholar
  33. [33]
    Mi Z. M., Chen Y., Chen X. D., Yan L. Q., Gu Q., Zhang H. Q., Chen C. H., Zhang Y. M., Chem. Res. Chinese Universities, 2018, 34(3), 369Google Scholar
  34. [34]
    Li Z. A., Lou X. D., Yu H. B., Li Z., Qin J. G., Macromolecules, 2008, 41(20), 7433Google Scholar
  35. [35]
    Gao D. W., Yu H. F., Jia J. L., Hua S. Y., Chen X. D., Acta Scientiarum Naturalium University Jilinensis, 1998, 1, 107Google Scholar
  36. [36]
    Zhou F., Leng T. H., Liu Y. J., Wang C. Y., Shi P., Zhu W. H., Dyes Pigments, 2017, 142, 429Google Scholar
  37. [37]
    Yan L. Q., Chen Y., Sun X. F., Yo M. J., Chen X. D., Gu Q., Zhang Y. M., Chem. Pap., 2016, 71(3), 1Google Scholar
  38. [38]
    Li J., Liu H. W., Meng F. Y., Yan L. Q., Shi Y. P., Zhang Y. M., Gu Q., Chem. Res. Chinese Universities, 2018, 34(2), 197Google Scholar
  39. [39]
    Wang L., Ye D., Li W., Liu Y., Li L., Zhang W., Ni L., Spectrochim. Acta A, 2017, 183, 291Google Scholar
  40. [40]
    Yan L. Q., Ma Y., Cui M. F., Anal. Methods, 2015, 7(15), 6133Google Scholar
  41. [41]
    Valeur B., Pouget J., Bourson J., Kachke M., Ernsting N. P., J. Phys. Chem., 1992, 96, 6545Google Scholar
  42. [42]
    Silva A. P. D., Gunaratne H. Q. N., Gunnlaugsson T., Huxley A. J. M., Mccoy C. P., Rademacher J. T., Chem. Rev., 1997, 97, 1515Google Scholar
  43. [43]
    Szacillowski K., Macyk H., Drzewiecka-Matuszek A., Brindell M., Stochel G., Chem. Rev., 2005, 105, 2647Google Scholar
  44. [44]
    Fagade U., Singh A., Chaitanya G. K., Singh N., Attarde S., Kuwar A., Spectrochim. Acta A, 2014, 121, 569Google Scholar
  45. [45]
    Li P., Zhao Y., Yao L., Nie H., Zhang M., Sensor Actuat. B: Chem, 2014, 191, 332Google Scholar
  46. [46]
    Bishnoi S., Milton M. D., J. Photoch. Photobio. A, 2017, 335, 52Google Scholar
  47. [47]
    Musa K., Kaya I., J. Ind. Eng. Chem., 2017, 46, 234Google Scholar
  48. [48]
    Chen J., Li Y., Lv K., Zhong W. B., Wang H., Wu Z., Yi P. G., Jiang J. H., Sensor Actuat. B: Chem., 2016, 224, 298Google Scholar
  49. [49]
    Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Yanpeng Shi
    • 1
  • Xiaodong Chen
    • 1
  • Zhiming Mi
    • 1
  • Ran Zheng
    • 1
  • Jie Fan
    • 1
  • Qiang Gu
    • 1
  • Yumin Zhang
    • 1
    Email author
  1. 1.College of ChemistryJilin UniversityChangchunP. R. China

Personalised recommendations