Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 1, pp 5–11 | Cite as

Synthesis and Properties of Novel Fluorescence Probe Based on 1,8-Naphthalimide for Detection of Hydrogen Sulfide

  • Yunxia Ma
  • Jie Zhang
  • Hongmei QuEmail author
Article
  • 27 Downloads

Abstract

Two fluorescence-enhanced probes, 4-(2,4-dinitrophenoxy)-N-(2-hydroxyethyl)-1,8-naphthalimide(NTE-1) and 4-(2,4-dinitrophenoxy)-N-(4-(2,4-dinitrophenoxy)phenyl)-1,8-naphthalimide(NTE-2), have been designed and synthesized for detection of H2S. 4-Hydroxy-1,8-naphthalimide as fluorophore in combination with 2,4-dinitrophenyl ether as H2S response site constructed the fluorescence probes. The consequences showed that both NTE-1 and NTE-2 displayed large red-shift(excess 100 nm) in absorption spectra and more than 30-fold fluorescence enhancement in response to H2S. Moreover, the dual site probe, NTE-2, displayed wider linear range between fluorescence intensity and concentration of H2S(0—40 μmol/L) compared with single site probe, which can be applied to quantitative detection of high concentration of H2S. The photoinduced electron transfer(PET) response mechanism of probe was further studied by analyzing the distributions of molecular orbital. Importantly, the probes have potential practical applications in detection of H2S.

Keywords

2,4-Dinitrophenyl ether Dual site Gaussian Photoinduced electron transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_8239_MOESM1_ESM.pdf (2.1 mb)
Synthesis and Properties of Novel Fluorescence Probe based on 1,8-Naphthalimide for Detection of Hydrogen Sulfide

References

  1. [1]
    Kashfi K., Olson K. R., Biochem. Pharm., 2013, 85(5), 689Google Scholar
  2. [2]
    Nagy P., Winterboum C. C., Chem. Res. Toxicol., 2010, 23(10), 1541Google Scholar
  3. [3]
    Hughes M. N., Centelles M. N., Moore K. P., Free. Radical. Bio. Med., 2009, 47(10), 1346Google Scholar
  4. [4]
    Zhang H., Jiao H., Jiang C. X., Wang S. H., Wei Z. J., Luo J. P., Jones R. L., Acta Physiol. Plant, 2010, 32(5), 849Google Scholar
  5. [5]
    Ma H., Cheng X., Li G. Q., Chen S. H., Quan Z. L., Zhao S. Y., Niu L., Corros. Sci., 2000, 42(10), 1669Google Scholar
  6. [6]
    Furne J., Saeed A., Levitt M. D., J. Physiol., 2008, 295(5), 1479Google Scholar
  7. [7]
    Tang T., Jiang G. F., New J. Chem., 2017, 41(14), 6769Google Scholar
  8. [8]
    Chen L. Y., Wu D., Lim C. S., Kim D., Nam S. J., Lee W., Kim G., Kim H. M., Yoon J., Chem. Commun., 2017, 53(35), 4791Google Scholar
  9. [9]
    Lawrence N. S., Davis J., Jiang J., Jones T. G. J., Davis S. N., Compton R. G., Electroanalysis, 2000, 25(4), 661Google Scholar
  10. [10]
    Li W. H., Sun W., Yu X. Q., Du L. P., Li M. Y., J. Fluoresc., 2013, 23(1), 181Google Scholar
  11. [11]
    Li W., Zhu Z. T., Li Y. Y., Yi L., Xi Z., Chem. Commun., 2015, 51(52), 10463Google Scholar
  12. [12]
    Liu H. Y., Zhao M., Qiao Q. L., Lang H. J., Xu J. Z., Xu Z. C., Chin. Chem. Lett., 2014, 25(7), 1060Google Scholar
  13. [13]
    Fu Y. J., Yao H. W., Zhu X. Y., Guo X. F., Wang H., Anal. Chim. Acta, 2017, 994, 1Google Scholar
  14. [14]
    Zhang J., Peng F. F., Dong X. C., Zhao W. L., Chem. Lett., 2015, 44(11), 1524Google Scholar
  15. [15]
    Fan F. L., Jing J. Q., Chen X. M., Chin. J. Org. Chem., 2014, 34(10), 2178Google Scholar
  16. [16]
    Gao B. Z., Cui L. X., Pan Y., Xue M. J., Zhu B. Y., Zhang G. M., Zhang C. H., Shuang S. M., Dong C., Spectrochim. Acta A, 2017, 173, 457Google Scholar
  17. [17]
    Liu T. Y., Zhang X. F., Qiao Q. L., Zou C. Y., Cui J. N., Xu Z. C., Dyes Pigm., 2013, 99(3), 537Google Scholar
  18. [18]
    Yuan L., Zuo Q. P., Sens. Actuat B: Chem., 2014, 196, 151Google Scholar
  19. [19]
    Liu X. L., Du X. J., Dai C. G., Qin H.S., J. Org. Chem., 2014, 79(20), 9481Google Scholar
  20. [20]
    And N. N., Ishitani A., Dixon D. A., Uda T., J. Phys. Chem. A., 2001, 105(20), 4953Google Scholar
  21. [21]
    Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J.V., Cioslowski J., Fox D. J., GAUSSIAN 09, Revision C.01, Gaussian Inc., Wallingford CT, 2010Google Scholar
  22. [22]
    Stephens P. J., Devilin F. G., Chabalowski C. F., Frisch M. J., J. Phys. Chem., 1994, 98, 11623Google Scholar
  23. [23]
    Lu T., Chen, F. W., J. Comput. Chem., 2012, 33(5), 580Google Scholar
  24. [24]
    Takeshi Y., David P. T., Nicholas C. H., Chem. Phys. Lett., 2004, 393(1), 51Google Scholar
  25. [25]
    Yu L. I., Jiang L., Chem. Res. Chinese Universities, 2014, 30(6), 997Google Scholar
  26. [26]
    Liu T. Y., Xu Z. C., Spring D. R., Cui J. N., Org. Lett., 2013, 15(9), 2310Google Scholar
  27. [27]
    Chinapang P., Ruangpornvisuti V., Sukwattanasinitt M., Rashatasakhon P., Dyes Pigm., 2015, 112, 236Google Scholar
  28. [28]
    Montoya L.A., Pluth M. D., Chem. Commun., 2012, 48(39), 4767Google Scholar
  29. [29]
    Bamesberger A., Schwartz C., Song Q., Han W. W., Wang Z., Cao H. S., New J. Chem., 2014, 38(3), 884Google Scholar
  30. [30]
    Fleming C. L., Nalder T. D., Doeven E. H., Barrow C. J., Pfeffer F. M., Ashton T. D., Dyes Pigm., 2016, 126, 128Google Scholar
  31. [31]
    Bae S. K., Heo C. H., Choi D. J., Sen D., Joe E. H., Cho B. C., Kim H. M., J. Am. Chem. Soc., 2013, 135, 9915Google Scholar
  32. [32]
    Liu X. L., Du X. J., Dai C. G., Song Q. H., J. Org. Chem., 2014, 79(20), 9481Google Scholar
  33. [33]
    Feng W. Q., Mao Z. Q., Liu L. Z., Liu Z. H., Talanta, 2017, 167, 134Google Scholar
  34. [34]
    Das S. K., Lim C. S., Yang S. Y., Han J. H., Cho B. R., Chem. Commun., 2012, 48(67), 8395Google Scholar
  35. [35]
    Liu K. R., Liu C., Shang H. M., Ren M. G., Lin W. Y., Sens. Actuat. B: Chem., 2018, 256, 342Google Scholar
  36. [36]
    Zheng K. B., Lin W. Y., Tan L., Cheng D., Anal. Chim. Acta, 2015, 853, 548Google Scholar
  37. [37]
    Zhou Y., Wang Y. K., Wang, X. F., Zhang Y. J., Wang C. K., Chin. Phys. B., 2017, 26(8), 123Google Scholar
  38. [38]
    Liu X. J., Lin T., Gao S. W., Ma R., Zhang J. Y., Cai X. C., Yang L., Teng F., Acta Phys.-Chem. Sin., 2012, 28(6), 1337Google Scholar
  39. [39]
    Zhang Y. J., Yang W. J., Wang C. K., Chem. Phys., 2016, 468, 37Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.Key Laboratory of Systems Bioengineering, Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering and TechnologyTianjin UniversityTianjinP. R. China

Personalised recommendations