Synthesis and Properties of Novel Fluorescence Probe Based on 1,8-Naphthalimide for Detection of Hydrogen Sulfide

  • Yunxia Ma
  • Jie Zhang
  • Hongmei Qu


Two fluorescence-enhanced probes, 4-(2,4-dinitrophenoxy)-N-(2-hydroxyethyl)-1,8-naphthalimide(NTE-1) and 4-(2,4-dinitrophenoxy)-N-(4-(2,4-dinitrophenoxy)phenyl)-1,8-naphthalimide(NTE-2), have been designed and synthesized for detection of H2S. 4-Hydroxy-1,8-naphthalimide as fluorophore in combination with 2,4-dinitrophenyl ether as H2S response site constructed the fluorescence probes. The consequences showed that both NTE-1 and NTE-2 displayed large red-shift(excess 100 nm) in absorption spectra and more than 30-fold fluorescence enhancement in response to H2S. Moreover, the dual site probe, NTE-2, displayed wider linear range between fluorescence intensity and concentration of H2S(0—40 μmol/L) compared with single site probe, which can be applied to quantitative detection of high concentration of H2S. The photoinduced electron transfer(PET) response mechanism of probe was further studied by analyzing the distributions of molecular orbital. Importantly, the probes have potential practical applications in detection of H2S.


2,4-Dinitrophenyl ether Dual site Gaussian Photoinduced electron transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_8239_MOESM1_ESM.pdf (1.3 mb)
Synthesis and Properties of Novel Fluorescence Probe based on 1,8-Naphthalimide for Detection of Hydrogen Sulfide


  1. [1]
    Kashfi K., Olson K. R., Biochem. Pharm., 2013, 85(5), 689CrossRefGoogle Scholar
  2. [2]
    Nagy P., Winterboum C. C., Chem. Res. Toxicol., 2010, 23(10), 1541CrossRefGoogle Scholar
  3. [3]
    Hughes M. N., Centelles M. N., Moore K. P., Free. Radical. Bio. Med., 2009, 47(10), 1346CrossRefGoogle Scholar
  4. [4]
    Zhang H., Jiao H., Jiang C. X., Wang S. H., Wei Z. J., Luo J. P., Jones R. L., Acta Physiol. Plant, 2010, 32(5), 849CrossRefGoogle Scholar
  5. [5]
    Ma H., Cheng X., Li G. Q., Chen S. H., Quan Z. L., Zhao S. Y., Niu L., Corros. Sci., 2000, 42(10), 1669CrossRefGoogle Scholar
  6. [6]
    Furne J., Saeed A., Levitt M. D., J. Physiol., 2008, 295(5), 1479Google Scholar
  7. [7]
    Tang T., Jiang G. F., New J. Chem., 2017, 41(14), 6769CrossRefGoogle Scholar
  8. [8]
    Chen L. Y., Wu D., Lim C. S., Kim D., Nam S. J., Lee W., Kim G., Kim H. M., Yoon J., Chem. Commun., 2017, 53(35), 4791CrossRefGoogle Scholar
  9. [9]
    Lawrence N. S., Davis J., Jiang J., Jones T. G. J., Davis S. N., Compton R. G., Electroanalysis, 2000, 25(4), 661Google Scholar
  10. [10]
    Li W. H., Sun W., Yu X. Q., Du L. P., Li M. Y., J. Fluoresc., 2013, 23(1), 181CrossRefGoogle Scholar
  11. [11]
    Li W., Zhu Z. T., Li Y. Y., Yi L., Xi Z., Chem. Commun., 2015, 51(52), 10463CrossRefGoogle Scholar
  12. [12]
    Liu H. Y., Zhao M., Qiao Q. L., Lang H. J., Xu J. Z., Xu Z. C., Chin. Chem. Lett., 2014, 25(7), 1060CrossRefGoogle Scholar
  13. [13]
    Fu Y. J., Yao H. W., Zhu X. Y., Guo X. F., Wang H., Anal. Chim. Acta, 2017, 994, 1CrossRefGoogle Scholar
  14. [14]
    Zhang J., Peng F. F., Dong X. C., Zhao W. L., Chem. Lett., 2015, 44(11), 1524CrossRefGoogle Scholar
  15. [15]
    Fan F. L., Jing J. Q., Chen X. M., Chin. J. Org. Chem., 2014, 34(10), 2178CrossRefGoogle Scholar
  16. [16]
    Gao B. Z., Cui L. X., Pan Y., Xue M. J., Zhu B. Y., Zhang G. M., Zhang C. H., Shuang S. M., Dong C., Spectrochim. Acta A, 2017, 173, 457CrossRefGoogle Scholar
  17. [17]
    Liu T. Y., Zhang X. F., Qiao Q. L., Zou C. Y., Cui J. N., Xu Z. C., Dyes Pigm., 2013, 99(3), 537CrossRefGoogle Scholar
  18. [18]
    Yuan L., Zuo Q. P., Sens. Actuat B: Chem., 2014, 196, 151CrossRefGoogle Scholar
  19. [19]
    Liu X. L., Du X. J., Dai C. G., Qin H.S., J. Org. Chem., 2014, 79(20), 9481CrossRefGoogle Scholar
  20. [20]
    And N. N., Ishitani A., Dixon D. A., Uda T., J. Phys. Chem. A., 2001, 105(20), 4953CrossRefGoogle Scholar
  21. [21]
    Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J.V., Cioslowski J., Fox D. J., GAUSSIAN 09, Revision C.01, Gaussian Inc., Wallingford CT, 2010Google Scholar
  22. [22]
    Stephens P. J., Devilin F. G., Chabalowski C. F., Frisch M. J., J. Phys. Chem., 1994, 98, 11623CrossRefGoogle Scholar
  23. [23]
    Lu T., Chen, F. W., J. Comput. Chem., 2012, 33(5), 580CrossRefGoogle Scholar
  24. [24]
    Takeshi Y., David P. T., Nicholas C. H., Chem. Phys. Lett., 2004, 393(1), 51Google Scholar
  25. [25]
    Yu L. I., Jiang L., Chem. Res. Chinese Universities, 2014, 30(6), 997CrossRefGoogle Scholar
  26. [26]
    Liu T. Y., Xu Z. C., Spring D. R., Cui J. N., Org. Lett., 2013, 15(9), 2310CrossRefGoogle Scholar
  27. [27]
    Chinapang P., Ruangpornvisuti V., Sukwattanasinitt M., Rashatasakhon P., Dyes Pigm., 2015, 112, 236CrossRefGoogle Scholar
  28. [28]
    Montoya L.A., Pluth M. D., Chem. Commun., 2012, 48(39), 4767CrossRefGoogle Scholar
  29. [29]
    Bamesberger A., Schwartz C., Song Q., Han W. W., Wang Z., Cao H. S., New J. Chem., 2014, 38(3), 884CrossRefGoogle Scholar
  30. [30]
    Fleming C. L., Nalder T. D., Doeven E. H., Barrow C. J., Pfeffer F. M., Ashton T. D., Dyes Pigm., 2016, 126, 128CrossRefGoogle Scholar
  31. [31]
    Bae S. K., Heo C. H., Choi D. J., Sen D., Joe E. H., Cho B. C., Kim H. M., J. Am. Chem. Soc., 2013, 135, 9915CrossRefGoogle Scholar
  32. [32]
    Liu X. L., Du X. J., Dai C. G., Song Q. H., J. Org. Chem., 2014, 79(20), 9481CrossRefGoogle Scholar
  33. [33]
    Feng W. Q., Mao Z. Q., Liu L. Z., Liu Z. H., Talanta, 2017, 167, 134CrossRefGoogle Scholar
  34. [34]
    Das S. K., Lim C. S., Yang S. Y., Han J. H., Cho B. R., Chem. Commun., 2012, 48(67), 8395CrossRefGoogle Scholar
  35. [35]
    Liu K. R., Liu C., Shang H. M., Ren M. G., Lin W. Y., Sens. Actuat. B: Chem., 2018, 256, 342CrossRefGoogle Scholar
  36. [36]
    Zheng K. B., Lin W. Y., Tan L., Cheng D., Anal. Chim. Acta, 2015, 853, 548CrossRefGoogle Scholar
  37. [37]
    Zhou Y., Wang Y. K., Wang, X. F., Zhang Y. J., Wang C. K., Chin. Phys. B., 2017, 26(8), 123Google Scholar
  38. [38]
    Liu X. J., Lin T., Gao S. W., Ma R., Zhang J. Y., Cai X. C., Yang L., Teng F., Acta Phys.-Chem. Sin., 2012, 28(6), 1337Google Scholar
  39. [39]
    Zhang Y. J., Yang W. J., Wang C. K., Chem. Phys., 2016, 468, 37CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Systems Bioengineering, Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering and TechnologyTianjin UniversityTianjinP. R. China

Personalised recommendations