Advertisement

Catalytic Oxidation of Trichloroethylene over RuO2 Supported on Ceria-zirconia Mixed Oxide

  • Lulu Lu
  • Chan Wang
  • Mei Wang
  • Qijun SongEmail author
Article
  • 6 Downloads

Abstract

Ru/Ce-Zr catalysts were prepared by impregnation of Ru on the hydrothermally synthesized Ce-Zr mixed oxide with different molar ratio of Ce/Zr. The resultant products were systematically characterized by inductively coupled plasma(ICP), X-ray diffraction(XRD), scanning electron microscopy(SEM)/energy dispersive spectrome-try(EDS), H2-temperature programmed reduction(H2-TPR), NH3-temperature programmed desorption(NH3-TPD) and X-ray photoelectron spectroscopy(XPS). It was proved by H2-TPR and NH3-TPD that the introduction of Ru can im-prove the activity of oxygen of catalysts and the presence of Zr contributes to the increments of acid properties of catalysts. When the molar ratio of Ce-Zr was 8:4, the quantity of Ru was 0.9%(mass ratio), and the calcined temperature of catalysts was at 400 °C, the removal rate of 90% for trichloroethylene(TCE) was reached at 250 °C for 5360 mg/m3 TCE and the stability of the catalysts was investigated under the condition. The results showed that the high removal rate can be maintained for at least 90 h, which is promising for industrial application.

Keywords

Catalytic oxidation Trichloroethylene RuO2 Ceria-zirconia mixed oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Miguet M., Goetz V., Plantard G., Ind. Eng. Chem. Res., 2015, 54(40), 9813Google Scholar
  2. [2]
    Lemus J., Martin-Martinez M., Palomar J., Chem. Eng. J., 2012, 211/212(47), 246Google Scholar
  3. [3]
    Gallego E., Roca F. J., Perales J. F., Talanta, 2010, 81(3), 916Google Scholar
  4. [4]
    Hsu S. H., Huang C. S., Chung T. W., J. Taiwan Inst. Chem. E., 2014, 45(5), 2526Google Scholar
  5. [5]
    Zeinali F., Ghoreyshi A. A., Najafpour G., Chem. Eng. Commun., 2012, 199(2), 203Google Scholar
  6. [6]
    Kalender M., Akosman C., Rom. Biotech. Lett., 2015, 20(2), 10245Google Scholar
  7. [7]
    Liu B., Li X., Zhao Q., J. Mater. Chem. A, 2015, 3(29), 15163Google Scholar
  8. [8]
    Hager S., Bauer R., Kudielka G., Chemosphere, 2000, 41(8), 1219Google Scholar
  9. [9]
    Zou X., Dong Y., Zhang X., Appl. Surf. Sci., 2016, 391, 525Google Scholar
  10. [10]
    Ebrahimi H., Shahna F. G., Bahrami A., Arch. Environ. Prot., 2017, 43(1), 65Google Scholar
  11. [11]
    Karuppiah J., Reddy P., Reddy E. L., Plasma Processes & Polym., 2013, 10(12), 1074Google Scholar
  12. [12]
    Ebrahimi H., Bahrami A., Jaleh B., Fresen. Environ. Bull., 2015, 24(5A), 1871Google Scholar
  13. [13]
    Abedi K., Ghorbanishahna F., Jaleh B., J. Environ. Health Sci., 2014, 12(1), 119Google Scholar
  14. [14]
    Jiang L., Li S., Cheng Z., J. Chem. Tech. Biot., 2018, 93(1), 127Google Scholar
  15. [15]
    Magureanu M., Mandache N. B., Parvulescu V. I., Appl. Catal. B: Environ., 2007, 74(3), 270Google Scholar
  16. [16]
    Jiang L., Nie G., Zhu R., J. Environ. Sci., 2017, 55(5), 266Google Scholar
  17. [17]
    Cao S., Wang H., Yu F., J. Colloid Interf. Sci., 2016, 463, 233Google Scholar
  18. [18]
    Okal J., Zawadzki M., Kraszkiewicz P., Appl. Catal. A: Gen., 2018, 549, 161Google Scholar
  19. [19]
    Huang H., Gu Y., Zhao J., J. Catal., 2015, 326, 54Google Scholar
  20. [20]
    Michalik-Zym A., Dula R., Duraczyńska D., Appl. Catal. B: Environ., 2015, 174, 293Google Scholar
  21. [21]
    Zhang C., Wang C., Gil S., Appl. Catal. B: Environ., 2016, 201, 552Google Scholar
  22. [22]
    Dai Q., Yin L. L., Bai S., Appl. Catal. B: Environ., 2016, 182, 598Google Scholar
  23. [23]
    Wu L., He F., Luo J., RSC Adv., 2017, 7(43), 26952Google Scholar
  24. [24]
    Dai Q., Wang W., Wang X., Appl. Catal. B: Environ., 2017, 203, 31Google Scholar
  25. [25]
    Zhao P., Wang C., He F., RSC. Adv., 2014, 4(86), 45665Google Scholar
  26. [26]
    Dai Q., Bai S., Wang X., Appl. Catal. B: Environ., 2013, 129(3), 580Google Scholar
  27. [27]
    Gutiérrez-Ortiz J. I., Rivas B. D., López-Fonseca R., Appl. Catal. B: Environ., 2006, 65(3/4), 191Google Scholar
  28. [28]
    Matějová L., Topka P., Kaluža L., Appl. Catal. B: Environ., 2013, 142/143(10), 54Google Scholar
  29. [29]
    Topka P., Delaigle R., Kaluža L., Catal. Today, 2015, 253, 172Google Scholar
  30. [30]
    Miranda B., Díaz E., Ordóñez S., Catal. Commun., 2006, 7(12), 945Google Scholar
  31. [31]
    Dai Q., Bai S., Wang Z., Appl. Catal. B: Environ., 2012, 126(126), 64Google Scholar
  32. [32]
    Dai Q., Bai S., Wang J., Appl. Catal. B: Environ., 2013, 142/143(5), 222Google Scholar
  33. [33]
    Terribile D., Trovarelli A., Leitenburg C. D., Catal. Today, 1999, 47(1–4), 133Google Scholar
  34. [34]
    Passos F. B., Oliveira E., Mattos L. V., Catal Today, 2005, 101(1), 23Google Scholar
  35. [35]
    Eriksson S., Rojas S., Boutonnet M., Appl. Catal. A: Gen., 2007, 326(1), 8Google Scholar
  36. [36]
    Dumas O., Despreaux T., Perros F., Resp. Med., 2018, 134, 47Google Scholar
  37. [37]
    Liu M., Shin E. J., Dang D. K., Mol. Neurobiol., 2018, 55(7), 6201Google Scholar
  38. [38]
    Kumar P., With P., Srivastava V. C., J. Alloy Compd., 2017, 696, 718Google Scholar
  39. [39]
    Huang H., Dai Q., Wang X., Appl. Catal. B: Environ., 2014, 158/159(3), 96Google Scholar
  40. [40]
    Rivas B. D., López-Fonseca R., Sampedro C., Appl. Catal. B: Envi-ron., 2009, 90(3/4), 545Google Scholar
  41. [41]
    Huang W., Yang J., Wang C., Mater. Res. Bull., 2012, 47(9), 2349Google Scholar
  42. [42]
    Rivas B. D., López-Fonseca R., González-Velasco J. R., J. Mol. Catal. A: Chem., 2007, 278(1/2), 181Google Scholar
  43. [43]
    Zhao B., Wang Q., Chinese J. Catal., 2009, 30(5), 407Google Scholar
  44. [44]
    Li G., Wang Q., Bo Z., Catal. Today, 2010, 158(3), 385Google Scholar
  45. [45]
    Kim K. S., Winograd N., J. Catal., 1974, 35(1), 66Google Scholar
  46. [46]
    Yang P., Meng Z., Yang S., J. Mol. Catal. A: Chem., 2014, 393(18), 75Google Scholar
  47. [47]
    Wang X., Qian K., Li D., Catal. Commun., 2008, 9(13), 2158Google Scholar
  48. [48]
    Yao H. C., Yao Y. F., J. Catal., 1984, 86(2),254Google Scholar
  49. [49]
    López-Fonseca R., Gutiérrez-Ortiz J. I., Gutiérrez-Ortiz M. A., J. Catal., 2002, 209(1), 145Google Scholar
  50. [50]
    Rao G. R., Sahu H. R., J. Chem. Sci., 2001, 113(5/6), 651Google Scholar
  51. [51]
    Huang Q., Xue X., Zhou R., J. Mol. Catal. A: Chem., 2011, 344(1), 74Google Scholar
  52. [52]
    Rivas B. D., Gutiérrez-Ortiz J. I., López-Fonseca R, Appl. Catal. A: Gen., 2006, 314(1), 54Google Scholar
  53. [53]
    Wang J., Shen M., An Y., Catal. Commun., 2009, 10(1), 103Google Scholar
  54. [54]
    Zhao M., Shen M., Wang J., J. Catal., 2007, 248(2), 258Google Scholar
  55. [55]
    Sinquin G., Petit C., Libs S., Appl. Catal. B: Environ., 2001, 32(1), 37Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiP. R. China

Personalised recommendations