Effects of Replacement on the Optical Properties of Narrow Bandgap Polymers: Comparing the Difference Between Thieno[3,2-b]thiophene Units and Thiophene Units
- 5 Downloads
Abstract
The effects of replacement on the optical properties of diketopyrrolopyrrole(DPP)-based polymers are discussed through replacing the thieno[3,2-b]thiophene units by thiophene units. It is easy to see that the role of re-placement would lead to blue shift of steady-state absorption spectrum when thieno[3,2-b]thiophene units is replaced by thiophene units. Meanwhile, the transient absorption data indicate that the role of replacement would not change the relaxation mechanism of polymer, but is able to adjust the photo-excitation relaxation rate of polymer. Their in-tensity-dependent dynamic curves show that the exciton-exciton annihilation(EEA) would participate in the relaxation process when the polymer is in the aggregation. Through comparing the EEA data between the polymers, it is found that the role of replacement would change the spatial distribution of exciton.
Keywords
Transient absorption spectroscopy Dynamics Thieno[3,2-b]thiophene ReplacementPreview
Unable to display preview. Download preview PDF.
References
- [1]Bijleveld J. C., Gevaerts V. S., di Nuzzo. D., Turbiez M., Mathijssen S. G., de Leeuw D. M., Janssen R. A., Adv. Mater., 2010, 22(35), 242Google Scholar
- [2]Zhao J. H., Wang A. H., Green M. A., Ferrazza F., Appl. Phys. Lett., 1998, 73(14), 1991CrossRefGoogle Scholar
- [3]Zhou Y. F., Eckab M., Kruger M., Energy Environ. Sci., 2010, 3(12), 1851CrossRefGoogle Scholar
- [4]Li C., Liu M. Y., Pschirer N. G., Baumgarten M., Mullen K., Chem. Rev., 2010, 110(11), 6817CrossRefGoogle Scholar
- [5]Gendron D., Leclerc M., Energy. Environ. Sci., 2011, 4(4), 1225CrossRefGoogle Scholar
- [6]Goncalves L. M., Bermudez V. Z., Ribeiro. H. A., Mendes A. M., Energy. Environ. Sci., 2008, 1(6), 655CrossRefGoogle Scholar
- [7]Ning Z. J., Fu Y., Tian H., Energy. Environ. Sci., 2010, 3(9), 1170CrossRefGoogle Scholar
- [8]Zhang W., Smith J., Watkins S. E., Gysel R., McGehee M., Salleo A., McCulloch I., J. Am. Chem. Soc., 2010, 132(33), 11437CrossRefGoogle Scholar
- [9]Qiao Z., Xu Y., Lin S., Peng J., Cao D., Synth. Met., 2010, 160(13/14), 1544Google Scholar
- [10]Tantiwiwat M., Tamayo A., Luu N., Dang X. D., Nguyen T. Q., J. Phys. Chem. C, 2008, 112(44), 17402CrossRefGoogle Scholar
- [11]Liang Y., Yu L., Acc. Chem. Res., 2010, 43(9), 1227CrossRefGoogle Scholar
- [12]Wienk M. M., Turbiez M., Gilot J., Janssen R. A., J. Adv. Mater., 2008, 20(13), 2556CrossRefGoogle Scholar
- [13]Bijleveld J. C., Zoombelt A. P., Mathijssen S. G. J., Wienk M. M., Turbiez M., de Leeuw. D. M., Janssen R. A., J. Am. Chem. Soc., 2009, 131(46), 16616CrossRefGoogle Scholar
- [14]Zhou E. J., Wei Q. S., Yamakawa S., Zhang Y., Tajima K., Yang C. H., Hashimoto K., Macromolecules, 2010, 43(2), 821CrossRefGoogle Scholar
- [15]Ashraf R. S., Chen Z., Leem D. S., Bronstein H., Zhang. W., Schroeder B., Geerts Y., Smith J., Watkins S., Anthopoulos T. D., Sirringhaus H., de Mello. J. C., Heeney M., McCulloch I., Chem. Mater., 2011, 23(3), 768CrossRefGoogle Scholar
- [16]Sonar P., Singh S. P., Li Y., Soh M. S., Dodabalapur A., Adv. Mater., 2010, 22(47), 5409CrossRefGoogle Scholar
- [17]Bronstein H., Chen Z., Ashraf R. S., Zhang W., Du J., Durrant J. R., Wienk M. M., J. Am. Chem. Soc., 2011, 133(10), 3272CrossRefGoogle Scholar
- [18]Williams R. M., Chen H. C., Di N. D., Meskers S. C., Janssen R. A., J. Spectrosc., 2017, 2017, 1CrossRefGoogle Scholar
- [19]Lanzani G., Cerullo G., Polli D., Gambetta A., Zavelani-Rossi M., Gadermaier C., Phys. Status Solidi., 2004, 201(6), 1116CrossRefGoogle Scholar
- [20]Wang Y. H., Hou J. Q., Kang Z. H., Gong L. J., Huang T. H., Qu L. L., Ma Y. G., Lu R., Zhang H. Z., Chem. Phys. Lett., 2013, 566, 17CrossRefGoogle Scholar
- [21]Liu Q. H., Wang Y. H., Sui N., Wang Y. T., Chi X. C., Wang Q. Q., Chen Y., Ji W. Y., Zou L., Zhang H. Z., Scientific. Reports, 2016, 6, 29442CrossRefGoogle Scholar