Advertisement

Effects of Replacement on the Optical Properties of Narrow Bandgap Polymers: Comparing the Difference Between Thieno[3,2-b]thiophene Units and Thiophene Units

  • Ying Chen
  • Wenyan Wang
  • Ning SuiEmail author
  • Yinghui Wang
  • Xiaochun Chi
  • Zhihui Kang
  • Hanzhuang Zhang
  • Moucui NiEmail author
Article
  • 5 Downloads

Abstract

The effects of replacement on the optical properties of diketopyrrolopyrrole(DPP)-based polymers are discussed through replacing the thieno[3,2-b]thiophene units by thiophene units. It is easy to see that the role of re-placement would lead to blue shift of steady-state absorption spectrum when thieno[3,2-b]thiophene units is replaced by thiophene units. Meanwhile, the transient absorption data indicate that the role of replacement would not change the relaxation mechanism of polymer, but is able to adjust the photo-excitation relaxation rate of polymer. Their in-tensity-dependent dynamic curves show that the exciton-exciton annihilation(EEA) would participate in the relaxation process when the polymer is in the aggregation. Through comparing the EEA data between the polymers, it is found that the role of replacement would change the spatial distribution of exciton.

Keywords

Transient absorption spectroscopy Dynamics Thieno[3,2-b]thiophene Replacement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bijleveld J. C., Gevaerts V. S., di Nuzzo. D., Turbiez M., Mathijssen S. G., de Leeuw D. M., Janssen R. A., Adv. Mater., 2010, 22(35), 242Google Scholar
  2. [2]
    Zhao J. H., Wang A. H., Green M. A., Ferrazza F., Appl. Phys. Lett., 1998, 73(14), 1991CrossRefGoogle Scholar
  3. [3]
    Zhou Y. F., Eckab M., Kruger M., Energy Environ. Sci., 2010, 3(12), 1851CrossRefGoogle Scholar
  4. [4]
    Li C., Liu M. Y., Pschirer N. G., Baumgarten M., Mullen K., Chem. Rev., 2010, 110(11), 6817CrossRefGoogle Scholar
  5. [5]
    Gendron D., Leclerc M., Energy. Environ. Sci., 2011, 4(4), 1225CrossRefGoogle Scholar
  6. [6]
    Goncalves L. M., Bermudez V. Z., Ribeiro. H. A., Mendes A. M., Energy. Environ. Sci., 2008, 1(6), 655CrossRefGoogle Scholar
  7. [7]
    Ning Z. J., Fu Y., Tian H., Energy. Environ. Sci., 2010, 3(9), 1170CrossRefGoogle Scholar
  8. [8]
    Zhang W., Smith J., Watkins S. E., Gysel R., McGehee M., Salleo A., McCulloch I., J. Am. Chem. Soc., 2010, 132(33), 11437CrossRefGoogle Scholar
  9. [9]
    Qiao Z., Xu Y., Lin S., Peng J., Cao D., Synth. Met., 2010, 160(13/14), 1544Google Scholar
  10. [10]
    Tantiwiwat M., Tamayo A., Luu N., Dang X. D., Nguyen T. Q., J. Phys. Chem. C, 2008, 112(44), 17402CrossRefGoogle Scholar
  11. [11]
    Liang Y., Yu L., Acc. Chem. Res., 2010, 43(9), 1227CrossRefGoogle Scholar
  12. [12]
    Wienk M. M., Turbiez M., Gilot J., Janssen R. A., J. Adv. Mater., 2008, 20(13), 2556CrossRefGoogle Scholar
  13. [13]
    Bijleveld J. C., Zoombelt A. P., Mathijssen S. G. J., Wienk M. M., Turbiez M., de Leeuw. D. M., Janssen R. A., J. Am. Chem. Soc., 2009, 131(46), 16616CrossRefGoogle Scholar
  14. [14]
    Zhou E. J., Wei Q. S., Yamakawa S., Zhang Y., Tajima K., Yang C. H., Hashimoto K., Macromolecules, 2010, 43(2), 821CrossRefGoogle Scholar
  15. [15]
    Ashraf R. S., Chen Z., Leem D. S., Bronstein H., Zhang. W., Schroeder B., Geerts Y., Smith J., Watkins S., Anthopoulos T. D., Sirringhaus H., de Mello. J. C., Heeney M., McCulloch I., Chem. Mater., 2011, 23(3), 768CrossRefGoogle Scholar
  16. [16]
    Sonar P., Singh S. P., Li Y., Soh M. S., Dodabalapur A., Adv. Mater., 2010, 22(47), 5409CrossRefGoogle Scholar
  17. [17]
    Bronstein H., Chen Z., Ashraf R. S., Zhang W., Du J., Durrant J. R., Wienk M. M., J. Am. Chem. Soc., 2011, 133(10), 3272CrossRefGoogle Scholar
  18. [18]
    Williams R. M., Chen H. C., Di N. D., Meskers S. C., Janssen R. A., J. Spectrosc., 2017, 2017, 1CrossRefGoogle Scholar
  19. [19]
    Lanzani G., Cerullo G., Polli D., Gambetta A., Zavelani-Rossi M., Gadermaier C., Phys. Status Solidi., 2004, 201(6), 1116CrossRefGoogle Scholar
  20. [20]
    Wang Y. H., Hou J. Q., Kang Z. H., Gong L. J., Huang T. H., Qu L. L., Ma Y. G., Lu R., Zhang H. Z., Chem. Phys. Lett., 2013, 566, 17CrossRefGoogle Scholar
  21. [21]
    Liu Q. H., Wang Y. H., Sui N., Wang Y. T., Chi X. C., Wang Q. Q., Chen Y., Ji W. Y., Zou L., Zhang H. Z., Scientific. Reports, 2016, 6, 29442CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ying Chen
    • 1
  • Wenyan Wang
    • 1
  • Ning Sui
    • 1
    Email author
  • Yinghui Wang
    • 1
  • Xiaochun Chi
    • 1
  • Zhihui Kang
    • 1
  • Hanzhuang Zhang
    • 1
  • Moucui Ni
    • 1
    Email author
  1. 1.Key Laboratory of Physics and Technology for Advanced Batteries, College of PhysicsJilin UniversityChangchunP. R. China

Personalised recommendations