Comb-shaped 2-Methylimidazolium Poly(arylene ether sulfone) Anion Exchange Membranes with High Alkaline Stability

  • Yurong Zhang
  • Xiaoguang Ge
  • Chengji Zhao
  • Hui NaEmail author


A series of comb-shaped poly(arylene ether sulfone)s containing pendant 2-methyl-3-alkylimidazolium group(ImPAES-Cx, x=1, 6, 10) was prepared and characterized as novel anion exchange membranes. These Im-PAES-Cx membranes were obtained by benzylic bromination and imidazolium functionalization. The characteristic nano-phase separation structure was formed in membranes with longer alkyl side chains, as confirmed by small-angle X-ray scattering. The nano-phase separation structures endowed ImPAES-Cx membranes with improved ionic conductivity, dimensional stability(at least 60% decrease water uptake and swelling ratio at 60 °C) and mechanical properties, together with excellent alkaline stability. Especially, ImPAES-C6 membranes possessed enhanced hydroxide conductivity and chemical stability simultaneously. These results suggest that it is a feasible strategy to i ntroduce appropriate length of alkyl side chains into anion exchange membranes(AEMs) to improve the performance.


Comb-shaped structure Imidazolium functionalized poly(arylene ether sulfone) Alkaline stability Membrane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Varcoe J. R., Slade R. C. T., Fuel Cells, 2005, 5(2), 187CrossRefGoogle Scholar
  2. [2]
    Varcoe J. R., Atanassov P., Dekel D. R., Herring A. M., Hickner M. A., Kohl P. A., Kucernak A. R., Mustain W. E., Nijmeijer K., Scott K., Xu T. W., Zhuang L., Energ. Environ. Sci., 2014, 7(10), 3135CrossRefGoogle Scholar
  3. [3]
    Spendelow J. S., Wieckowski A., Phys. Chem. Chem. Phys., 2007, 9(21), 2654CrossRefGoogle Scholar
  4. [4]
    Sakamoto T., Matsumura D., Asazawa K., Martinez U., Serov A., Artyushkova K., Atanassov P., Tamura K., Nishihata Y., Tanaka H., Electrochim. Acta, 2015, 163, 116CrossRefGoogle Scholar
  5. [5]
    Wang Y. J., Qiao J., Baker R., Zhang J., Chem. Soc. Rev., 2013, 42(13), 5768CrossRefGoogle Scholar
  6. [6]
    Xu H., Fang J., Guo M., Lu X., Wei X., Tu S., J. Membr. Sci., 2010, 354(1/2), 206Google Scholar
  7. [7]
    Dong X., Hou S., Mao H., Zheng J., Zhang S., J. Membr. Sci., 2016, 518, 31CrossRefGoogle Scholar
  8. [8]
    Hu B., Miao L., Bai Y., Lu C., Polym. Chem., 2017, 8(30), 4403CrossRefGoogle Scholar
  9. [9]
    Wang G., Weng Y., Chu D., Chen R., Xie D., J. Membr. Sci., 2009, 332(1/2), 63Google Scholar
  10. [10]
    Weiber E. A., Jannasch P., J. Membr. Sci., 2016, 520, 425CrossRefGoogle Scholar
  11. [11]
    Zhao Z., Wang J., Li S., Zhang S., J. Power Sources, 2011, 196(10), 4445CrossRefGoogle Scholar
  12. [12]
    Gong X., Yan X., Li T., Wu X., Chen W., Huang S., Wu Y., Zhen D., He G., J. Membr. Sci., 2017, 523, 216CrossRefGoogle Scholar
  13. [13]
    Chen D., Hickner M. A., Macromolecules, 2013,. 46(23), 9270Google Scholar
  14. [14]
    Xu S., Zhang G., Zhang Y., Zhao C., Zhang L., Li M., Wang J., Zhang N., Na H., J. Mater. Chem., 2012, 22(26), 13295CrossRefGoogle Scholar
  15. [15]
    Xu T. W., Liu Z. M., Yang W. H., J. Membr. Sci., 2005, 249(1/2), 183Google Scholar
  16. [16]
    Yang J., Liu C., Hao Y., He X., He R., Electrochim. Acta, 2016, 207, 112CrossRefGoogle Scholar
  17. [17]
    Couture G., Alaaeddine A., Boschet F., Ameduri B., Prog. Polym. Sci., 2011, 36(11), 1521CrossRefGoogle Scholar
  18. [18]
    Qiu B., Lin B., Si Z., Qiu L., Chu F., Zhao J., Yan F., J. Power Sources, 2012, 217, 329CrossRefGoogle Scholar
  19. [19]
    Zhang F., Zhang H., Qu C., J. Mater. Chem., 2011, 21(34), 12744CrossRefGoogle Scholar
  20. [20]
    Rao A. H. N., Nam S., Kim T. H., Int. J. Hydrogen Energ., 2014, 39(11), 5919CrossRefGoogle Scholar
  21. [21]
    Pan Y., Zhang Q., Yan X., Liu J., Xu X., Wang T., Hamouti I. E., Ruan X., Hao C., He G., J. Membr. Sci., 2018, 552, 286CrossRefGoogle Scholar
  22. [22]
    Long H., Pivovar B., J. Phys. Chem. C, 2014, 118(19), 9880CrossRefGoogle Scholar
  23. [23]
    Wang W., Wang S., Xie X., Lv Y., Ramani V. K., J. Membr. Sci., 2014, 462, 112CrossRefGoogle Scholar
  24. [24]
    Deavin O. I., Murphy S., Ong A. L., Poynton S. D., Zeng R., Herman H., Varcoe J. R., Energ. Environ. Sci., 2012, 5(9), 8584CrossRefGoogle Scholar
  25. [25]
    Lin B., Dong H., Li Y., Si Z., Gu F., Yan F., Chem. Mater., 2013, 25(9), 1858CrossRefGoogle Scholar
  26. [26]
    Gu F., Dong H., Li Y., Si Z., Yan F., Macromolecules, 2014, 47(1), 208CrossRefGoogle Scholar
  27. [27]
    Gao L., He G., Pan Y., Zhao B., Xu X., Liu Y., Deng R., Yan X., J. Membr. Sci., 2016, 518, 159CrossRefGoogle Scholar
  28. [28]
    Yang C., Wang S., Ma W., Jiang L., Sun G., J. Mater. Chem. A, 2015, 3(16), 8559CrossRefGoogle Scholar
  29. [29]
    Arges C. G., Ramani V., Proc. Natl. Acad. Sci. USA, 2013, 110(7), 2490CrossRefGoogle Scholar
  30. [30]
    Ran J., Wu L., Xu T., Polym. Chem., 2013, 4(17), 4612CrossRefGoogle Scholar
  31. [31]
    Li N. W., Leng Y. J., Hickner M. A., Wang C. Y., J. Am. Chem. Soc., 2013, 135(27), 10124CrossRefGoogle Scholar
  32. [32]
    Pan J., Chen C., Zhuang L., Lu J. T., Accounts Chem. Res., 2012, 45(3), 473CrossRefGoogle Scholar
  33. [33]
    Pan J., Chen C., Li Y., Wang L., Tan L. S., Li G. W., Tang X., Xiao L., Lu J. T., Zhuang L., Energ. Environ. Sci., 2014, 7(1), 354CrossRefGoogle Scholar
  34. [34]
    Hu Z., Tang W., Ning D., Zhang X., Bi H., Chen S., Fuel Cells, 2016, 16(5), 557CrossRefGoogle Scholar
  35. [35]
    Dai J., He G., Ruan X., Zheng W., Pan Y., Yan X., Int. J. Hydrogen Energ., 2016, 41(25), 10923CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yurong Zhang
    • 1
  • Xiaoguang Ge
    • 1
  • Chengji Zhao
    • 1
  • Hui Na
    • 1
    Email author
  1. 1.Alan G. MacDiarmid Institute, College of ChemistryJilin UniversityChangchunP. R. China

Personalised recommendations