Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 2, pp 319–324 | Cite as

Graphitic Carbon Nitride Microspheres Supported α-FeO(OH) Hybrids for Visible Light Photodegradation of MO

  • Junlin Wang
  • Yongjie Yi
  • Mengjia Li
  • Yue ChangEmail author
  • Fei Zha
Article
  • 15 Downloads

Abstract

Graphitic carbon nitride(g-C3N4) microspheres supported α-FeO(OH) hybrids[α-FeO(OH)/g-C3N4] were prepared by means of a self-assembly method in deionized water. By UV-visible diffuse reflectance spectroscopy, it has been confirmed that α-FeO(OH)/g-C3N4 has a wider absorption range than g-C3N4. The feature of α-FeO(OH)/g-C3N4 can be attributed to the efficient separation of the electron-hole pairs with photoluminescence spectra. The degradation rate of methyl orange(MO) is up to 99% under the optimal conditions of 110 min, initial concentration of 30 mg/L, an α-FeO(OH)/g-C3N4 dosage of 15 mg as well as visible light. The mechanism for this photocatalytic reaction was proposed, with hydroxyl radicals being a major active catalytic species.

Keywords

α-FeO(OH)/g-C3N4 Self-assembly method Photocatalyst Methyl orange(MO) Visible light 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kim D., Sakimoto K. K., Hong D., Yang P., Angew. Chem., Int. Ed., 2015, 54(18), 3259Google Scholar
  2. [2]
    Wang J. S., Qin C. L., Wang H. J., Li J. D., Zhang X. L., Cheng S. Y., Jin L. Q., Chem. J. Chinese Universities, 2018, 39(11), 2500Google Scholar
  3. [3]
    Guan X. H., Qu P., Guan X., Wang G. S., RSC Adv., 2014, 4(30), 15579Google Scholar
  4. [4]
    Ohno T., Mitsui T., Matsumura M., Chem. Lett., 2003, 32(4), 364Google Scholar
  5. [5]
    Wang S. M., Yan X. X., Zhu Y., Deng D. M., He H. B., Luo L. Q., Chem. Res. Chinese Universities, 2018, 34(5), 705Google Scholar
  6. [6]
    Zhang K., Guo L. J., Catal. Sci. Technol., 2013, 3(7), 1672Google Scholar
  7. [7]
    Liu G., Niu P., Sun C. H., Smith S. C., Chen Z. G., Lu G. Q., Chen H. M., J. Am. Chem. Soc., 2010, 132(33), 11642Google Scholar
  8. [8]
    Ji H. H., Chang F., Hu X. F., Qin W., Shen J. W., Chem. Eng. J., 2013, 218(4), 183Google Scholar
  9. [9]
    Shi L., Wang T., Zhang H. B., Chang K., Ye J. H., Adv. Funct. Mater., 2015, 25(33), 5360Google Scholar
  10. [10]
    Zhang G. G., Zhang M. W., Ye X. X., Qiu X. Q., Li S., Wang X. C., Adv. Mater., 2014, 26(5), 805Google Scholar
  11. [11]
    Liang Q. H., Li Z., Huang Z. H., Kang F. Y., Yang Q. H., Adv. Funct. Mater., 2015, 25(44), 6885Google Scholar
  12. [12]
    Liu J., Wang H. Q., Chen Z. P., Moehwald H., Fiechter S., Krol R., Wen L. P., Jiang L., Antonietti M., Adv. Mater., 2015, 27(4), 712Google Scholar
  13. [13]
    Shiraishi Y., Kanazawa S., Sugano Y., Tsukamoto D., Sakamoto H., Ichikawa S., Hirai T., ACS Catal., 2014, 4(3), 774Google Scholar
  14. [14]
    Zhang Z. Y., Jiang D. L., Li D., He M. Q., Chen M., Appl. Catal. B., 2016, 183(4), 113Google Scholar
  15. [15]
    Wang K., Li Q., Liu B. S., Cheng B., Ho W. K., Yu J. G., Appl. Catal. B, 2015, 176/177(1), 44Google Scholar
  16. [16]
    Dong F., Zhao Z. W., Xiong T., Ni Z. L., Zhang W. D., Sun Y. J., Ho W. K., ACS Appl. Mater. Interfaces, 2013, 5(21), 11392Google Scholar
  17. [17]
    Jin J., Liang Q., Ding C. Y., Li Z. Y., Xu S., J. Alloy. Compd., 2017, 691(1), 763Google Scholar
  18. [18]
    Ding G. D., Wang W. T., Jiang T., Han B. X., Fan H. L., Yang G. Y., Chem. Cat. Chem., 2013, 5(1), 192Google Scholar
  19. [19]
    Zhou X. S., Jin B., Chen R. Q., Peng F., Fang Y. P., Mater. Res. Bull., 2013, 48(4), 1447Google Scholar
  20. [20]
    Peng W. C., Li X. Y., Catal. Commun., 2014, 49(5), 63Google Scholar
  21. [21]
    Ge L., Han C. G., Liu J., Appl. Catal. B: Environ., 2011, 108(1/2), 100Google Scholar
  22. [22]
    Liu L., Qi Y. H., Lu J. R., Lin S. L., An W. J., Liang Y. H., Cui W. Q., Appl. Catal. B: Environ., 2016, 183(1), 133Google Scholar
  23. [23]
    Li H., Li W., Zhang Y. J., Wang T. S., Wang B., Xu W., Jiang L., Song W. G., Shun C. Y., Wang C. R., J. Mater. Chem., 2011, 21(22), 7878Google Scholar
  24. [24]
    Jiang L. R., Zhao C., Huang Y. P., Li R. P., Environ. Chem., 2007, 26(1), 434Google Scholar
  25. [25]
    Christensen A. N., Jensen T. R., Bahl C. R. H., DiMasid E., J. Solid State Chem., 2007, 180(4), 1431Google Scholar
  26. [26]
    Zhou X. M., Yang H. C., Wang C. X., Mao X. B., Wang Y. S., Yang Y. L., Liu G., J. Phys. Chem. C, 2010, 114(10), 17051Google Scholar
  27. [27]
    Chen H. F., Wei G. D., Han X., Li S., Wang P. P., Chubik M., Gromov A., Wang Z. P., Han W., J. Mater. Sci.: Mater. Electron., 2011, 22(3), 252Google Scholar
  28. [28]
    Kakuta S., Numata T., Okayama T., Catal. Sci. Technol., 2014, 4(1), 164Google Scholar
  29. [29]
    Xu Y., Schoonen M. A. A., Am. Mineral., 2000, 85(4), 543Google Scholar
  30. [30]
    Sun J. H., Zhang J. S., Zhang M. W., Antonietti M., Fu X. Z., Wang X. C., Nature Communications, 2012, 3(4), 1139Google Scholar
  31. [31]
    Yu J. G., Li Q., Liu S. W., Chem. Eur. J., 2013, 19(7), 2433Google Scholar
  32. [32]
    Zhang Y., Zhao Z. Y., Chen J. R., Cheng L., Chang J., Sheng W. C., Chang H. Y., Chao S. S., Appl. Catal. B: Environ., 2015, 165(1), 715Google Scholar
  33. [33]
    Sun Y. J., Zhang W. D., Xiong T., Zhao Z., Dong F., Wang R., Ho W., J. Colloid. Interf. Sci., 2014, 418(1), 317Google Scholar
  34. [34]
    Wen J. Q., Xie J., Chen X. B., Li X., Appl. Surf. Sci., 2017, 391(1), 72Google Scholar
  35. [35]
    Ou P., Xu G., Ren Z. H., Huo X. H., Han G. R., Mater. Lett., 2008, 62(6/7), 914Google Scholar
  36. [36]
    Wang X. C., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J. M., Domen K., Antonietti M., Nat. Mater., 2009, 8(1),76Google Scholar
  37. [37]
    Zheng D. D., Zhang G. G., Wang X. C., Appl.Catal. B: Environ., 2015, 179(1), 479Google Scholar
  38. [38]
    Chen L. L., Chen M., Jiang D. L., Xie J. M., J. Mol. Catal. A: Chem., 2016, 425(1), 174Google Scholar
  39. [39]
    Guesh K., Márquez-Álvarez C., Chebude Y., Díaz I., Appl. Surf. Sci., 2016, 378(1), 473Google Scholar
  40. [40]
    Zhang G. H., Zhang T. Y., Li B., Jiang S., Zhang X., Hai L., Chen X. W., Wu W. B., Appl. Surf. Sci., 2018, 433(1), 963Google Scholar
  41. [41]
    Theerthagiri J., Senthil R. A., Priya A., Madhavan J., Michael R. J. V., Ashokkumar M., RSC Adv., 2014, 4(72), 38222Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Junlin Wang
    • 1
  • Yongjie Yi
    • 1
  • Mengjia Li
    • 1
  • Yue Chang
    • 1
    • 2
    • 3
    Email author
  • Fei Zha
    • 1
  1. 1.College of Chemistry & Chemical EngineeringNorthwest Normal UniversityLanzhouP. R. China
  2. 2.Key Laboratory of Eco-environment-related Polymer Materials, Ministry of EducationNorthwest Normal UniversityLanzhouP. R. China
  3. 3.Key Laboratory of Polymer Material of Gansu ProvinceNorthwest Normal UniversityLanzhouP. R. China

Personalised recommendations