Advertisement

In situ Characterization of Phase Transition of Amorphous Poly(9,9-di-n-octyl-2,7-fluorene) Thin Film During Thermal Annealing

  • Shengfei Meng
  • Pengyue Wang
  • Liuran Chen
  • Guanghui GaoEmail author
  • Jidong ZhangEmail author
Article
  • 3 Downloads

Abstract

Amorphous poly(9,9-di-n-octyl-2,7-fluorene)(PFO) thin films were characterized in situ via thermal annealing based on grazing incidence X-ray diffraction(GIXRD) profiles, UV-visible absorption spectrophotometry, and Fourier transform infrared spectroscopy(FTIR). The results of GIXRD indicated that the amorphous phase transformed into a crystalline phase when the annealing temperature was higher than 80 °C. Different outcomes were elicited for the intensities and d-spacings of the diffraction peaks below and above 80 °C, which were attributed to the formation of the κ-phase. The mechanism of phase transition was revealed by in situ UV-visible absorption and FTIR spectra, whereby the rearrangement of the side chains was dominant and the movement of the main chains was minimal, even when the annealing temperature was lower than 80 °C. In contrast, the rearrangement of the main chains was dominant when the temperature was higher than 80 °C.

Keywords

Polyfluorene Phase transition Thermal annealing Liquid crystalline κ-phase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Su A. C., Journal of the Chinese Chemical Society, 2013, 57(3B), 564Google Scholar
  2. [2]
    Khan Y., Ostfeld A. E., Lochner C. M., Pierre A., Arias A. C., Advanced Matter, 2016, 28(22), 4373CrossRefGoogle Scholar
  3. [3]
    Lee H., Kim M., Kim I., Lee H., Advanced Matter., 2016, 28(22), 4541CrossRefGoogle Scholar
  4. [4]
    Chen S. H., Su A. C., Su C. H., Macromolecules, 2005, 38(2), 6Google Scholar
  5. [5]
    Chen S. H., Su A. C., Su C. H., Macromolecules, 2004, 37(18), 6CrossRefGoogle Scholar
  6. [6]
    Grell M., Bradley D. D. C., Ungar G., Hill J., Whitehead K. S., Macromolecules, 1999, 32(18), 7CrossRefGoogle Scholar
  7. [7]
    Wan H., Bai S. S., Li H. D., Ding J. Q., Yao B., Xie Z. Y., Wang L. X., Zhang J. D., Journal of Luminescence, 2011, 131(7), 1393CrossRefGoogle Scholar
  8. [8]
    Azuma H., Asada K., Kobayashi T., Naito H., Thin Solid Films, 2006, 509, 182CrossRefGoogle Scholar
  9. [9]
    Huang L., Zhang L., Huang X., Li T., Liu B., Lu D., The Journal of Physical Chemistry B, 2014, 118(3), 791CrossRefGoogle Scholar
  10. [10]
    Chen X., Wan H., Li H. D., Cheng F., Ding J. Q., Yao B., Xie Z. Y., Wang L. X., Zhang J. D., Polymer, 2012, 53(17), 3827CrossRefGoogle Scholar
  11. [11]
    Arif M., Volz C., Guha S., Physical Review Letters, 2006, 96(2), 025503CrossRefGoogle Scholar
  12. [12]
    Niu X. D., Liu J. B., Xie Z. Y., Organic Electronics, 2010, 11(7), 1273CrossRefGoogle Scholar
  13. [13]
    Yang H., Qu K. X., Li H. D., Cheng H., Zhang J. D., Macromolecular Chemistry and Physics, 2016, 217(14), 1579CrossRefGoogle Scholar
  14. [14]
    Yi J. P., Niu Q. L., Xu W. D., Hao L., Yang L., Chi L., Fang Y. T., Huang J. J., Xia R. D., Scientific Reports, 2016, 6, 8CrossRefGoogle Scholar
  15. [15]
    Yao B., Zhang B., Ding J., Xie Z., Zhang J., Wang L., Organic Electronics, 2013, 14(3), 897CrossRefGoogle Scholar
  16. [16]
    Guo Y., Jin Y., Su Z., Soft Matter, 2012, 8(10), 2907CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering and Advanced Institute of Materials ScienceChangchun University of TechnologyChangchunP. R. China
  2. 2.State Key Lab of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China

Personalised recommendations