Effects of Cerium Oxides on the Catalytic Performance of Pd/CNT for Methanol Oxidation

  • Weimin ChenEmail author
  • Yu Zhang
  • Zhenyu Zhu


The carbon nanotubes supported palladium(Pd/CNT) nanocatalysts were modified by cerium oxides/hydroxides and their catalytic performances for methanol oxidation were evaluated. Electrochemical measurements indicate that the introduction of cerium remarkably improves the catalytic activity of Pd/CNT catalysts towards methanol oxidation. X-Ray photoelectron spectra results reveal an interaction between palladium and cerium oxides. It is also observed that cerium-modified catalysts have excellent poison resistances, which is attributed to the poison-removal ability of cerium oxides/hydroxides. The highly oxidized cerium oxides/hydroxides have a strong ability to inhibit the accumulation of carbonaceous intermediates on the active sites of Pd catalysts.


Electrocatalyst Methanol oxidation Palladium Cerium Modification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bianchini C., Shen P. K., Chem. Rev., 2009, 109(9), 4183CrossRefGoogle Scholar
  2. [2]
    Antolini E., Gonzalez E. R., J. Power Sources, 2010, 195(11), 3431CrossRefGoogle Scholar
  3. [3]
    Brouzgou A., Podias A., Tsiakaras P., J. Appl. Electrochem., 2013, 43(2), 119CrossRefGoogle Scholar
  4. [4]
    Kamarudin M. Z. F., Kamarudin S. K., Masdar M. S., Daud W. R. W., Int. J. Hydrogen Energy, 2013, 38(22), 9438CrossRefGoogle Scholar
  5. [5]
    Feng Y., Bin D., Yan B., Du Y., Majima T., Zhou W., J. Colloid Interf. Sci., 2017, 493, 190CrossRefGoogle Scholar
  6. [6]
    Zhu C., Wen D., Oschatz M., Holzschuh M., Liu W., Herrmann A. K., Simon F., Kaskel S., Eychmüller A., Small, 2015, 11(12), 1430CrossRefGoogle Scholar
  7. [7]
    Luo L. M., Zhang R. H., Chen D., Hu Q. Y., Zhang X., Yang C. Y., Zhou X. W., Electrochim. Acta, 2018, 259, 284CrossRefGoogle Scholar
  8. [8]
    Shen S., Guo Y., Luo L., Li F., Li L., Wei G., Yin J., Ke C., Zhang J., J. Phys. Chem. C, 2018, 122(3), 1604CrossRefGoogle Scholar
  9. [9]
    Chen Y., Chen M., Shi J., Yang J., Fan Y., Int. J. Hydrogen Energy, 2016, 41(38), 17112CrossRefGoogle Scholar
  10. [10]
    Yang Z. S., Wu J. J., Fuel Cells, 2012, 12(3), 420CrossRefGoogle Scholar
  11. [11]
    Fathirad F., Mostafavi A., Afzali D., Int. J. Hydrogen Energy, 2017, 42(5), 3215CrossRefGoogle Scholar
  12. [12]
    Kakati N., Maiti J., Lee S. H., Yoon Y. S., Int. J. Hydrogen Energy, 2012, 37(24), 19055CrossRefGoogle Scholar
  13. [13]
    Ma L., He H., Hsu A., Chen R., J. Power Sources, 2013, 241, 696CrossRefGoogle Scholar
  14. [14]
    Zhang K., Bin D., Yang B., Wang C., Ren F., Du Y., Nanoscale, 2015, 7, 12445CrossRefGoogle Scholar
  15. [15]
    Hao Y., Shen J., Wang X., Yuan J., Shao Y., Niu L., Huang S., Int. J. Hydrogen Energy, 2016, 41(4), 3015CrossRefGoogle Scholar
  16. [16]
    Cui X., Wang X., Xu X., Yang S., Wang Y., Electrochim. Acta, 2018, 260, 47CrossRefGoogle Scholar
  17. [17]
    Jurzinsky T., Kintzel B., Bär R., Cremers C., Tübke J., J. Electroanal. Chem., 2016, 776, 49CrossRefGoogle Scholar
  18. [18]
    Peng C., Yang W., Wu E., Ma Y., Zheng Y., Nie Y., Zhang H., Xu J., J. Alloy. Compd., 2017, 698, 250CrossRefGoogle Scholar
  19. [19]
    Zhang K. F., Guo D. J., Liu X., Li J., Li H. L., Su Z. X., J. Power Sources, 2006, 162(2), 1077CrossRefGoogle Scholar
  20. [20]
    Xu M. W., Gao G. Y., Zhou W. J., Zhang K. F., Li H. L., J. Power Sources, 2008, 175(1), 217CrossRefGoogle Scholar
  21. [21]
    Ou D. R., Mori T., Togasaki H., Takahashi M., Ye F., Drennan J., Langmuir, 2011, 27(7), 3859CrossRefGoogle Scholar
  22. [22]
    Scibioh M. A., Kim S. K., Cho E. A., Lim T. H., Hong S. A., Ha H. Y., Appl. Catal. B, 2008, 84(3/4), 773Google Scholar
  23. [23]
    Guo D. J., Jing Z. H., J. Power Sources, 2010, 195(12), 3802CrossRefGoogle Scholar
  24. [24]
    Guo J. W., Zhao T. S., Prabhuram J., Chen R., Wong C. W., J. Power Sources, 2006, 156(2), 345CrossRefGoogle Scholar
  25. [25]
    Ye K. H., Zhou S. A., Zhu X. C., Xu C. W., Shen P. K., Electrochim. Acta, 2013, 90, 108CrossRefGoogle Scholar
  26. [26]
    Xu C., Tian Z., Shen P., Jiang S. P., Electrochim. Acta, 2008, 53(5), 2610CrossRefGoogle Scholar
  27. [27]
    Sun Z., Wang X., Liu Z., Zhang H., Yu P., Mao L., Langmuir, 2010, 26(14), 12383CrossRefGoogle Scholar
  28. [28]
    Zhou Z., Wang S., Zhou W., Wang G., Jiang L., Li W., Song S., Liu J., Sun G., Xin Q., Chem. Commun., 2003, 394Google Scholar
  29. [29]
    Radmilovic V., Gasteiger H. A., Ross P. N., J. Catal., 1995, 154(1), 98CrossRefGoogle Scholar
  30. [30]
    Zhou Y., Gao Y., Liu Y., Liu J., J. Power Sources, 2010, 195(6), 1605CrossRefGoogle Scholar
  31. [31]
    Tauster S. J., Fung S. C., Baker R. T. K., Horsley J. A., Science, 1981, 211, 1121CrossRefGoogle Scholar
  32. [32]
    Tauster S. J., Fung S. C., J. Catal., 1978, 55(1), 29CrossRefGoogle Scholar
  33. [33]
    Otomo J., Li X., Kobayashi T., Wen C., Nagamoto H., Takahashi H., J. Electroanal. Chem., 2004, 573(1), 99Google Scholar
  34. [34]
    Mueller J. T., Urban P. M., J. Power Sources, 1998, 75(1), 139CrossRefGoogle Scholar
  35. [35]
    Müller J. T., Urban P. M., Hölderich W. F., J. Power Sources, 1999, 84(2), 157CrossRefGoogle Scholar
  36. [36]
    Hsing I. M., Wang X., Leng Y. J., J. Electrochem. Soc., 2002, 149(5), A615Google Scholar
  37. [37]
    Li K., Zhao P., Mater. Res. Bull., 2010, 45(2), 243CrossRefGoogle Scholar
  38. [38]
    Wang S., Gu F., Li C., Cao H., J. Cryst. Growth, 2007, 307(2), 386CrossRefGoogle Scholar
  39. [39]
    Yu S., Liu Q., Yang W., Han K., Wang Z., Zhu H., Electrochim. Acta, 2013, 94, 245CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Environmental and Chemical EngineeringShenyang Ligong UniversityShenyangP. R. China
  2. 2.R & D Center of Shandong Shinlong GroupShouguangP. R. China

Personalised recommendations