Uncommon Intramolecular Charge Transfer Effect and Its Potential Application in OLED Emitters
- 14 Downloads
Abstract
Planarized intramolecular charge transfer(PLICT) state can facilitate the fluorescence process thanks to the relative excellent planarity. Recently, we have discovered that the excited state quinone-conformation induced planarization(ESQIP) occurring on tetraphenylpyrazine(TPP) based derivatives could furnish them with PLICT feature. Unlike to the well-known intramolecular charge transfer, strengthening the electron-donating nature on the donor(D) moiety did not impair the PLICT. The calculation results showed that planarization of the TPP based compounds scarcely accompanied with energy wastage while amount of energy was required for the torsion on geometries. In the polar solvents, the energy consumption for planarization could further decrease, but that for twisting structure would increase. To take advantage of the transformation of the frontier orbitals’ distribution, the PLICT type materials would perform a potential application on organic light-emitting diodes(OLEDs).
Keywords
Planarized intramolecular charge transfer Tetraphenylpyrazine Excited state quinone-conformation induced planarization Organic light-emitting diodePreview
Unable to display preview. Download preview PDF.
Supplementary material
References
- [1]Gather M. C., Köhnen A., Meerholz K., Adv. Mater., 2011, 23, 233CrossRefGoogle Scholar
- [2]Hashimoto M., Igawa S., Yashima M., Kawata I., Hoshino M., Osawa M., J. Am. Chem. Soc., 2011, 133, 10348CrossRefGoogle Scholar
- [3]Tao Y., Yang C., Qin J., Chem. Soc. Rev., 2011, 40, 2943CrossRefGoogle Scholar
- [4]Uoyama H., Goushi K., Shizu K., Nomura H., Adachi C., Nature, 2012, 492, 234CrossRefGoogle Scholar
- [5]Vasilopoulou M., Georgiadou D., Pistolis G., Argitis P., Adv. Funct. Mater., 2007, 17, 3477CrossRefGoogle Scholar
- [6]Wang Z. B., Helander M. G., Qiu J., Puzzo D. P., Greiner M. T., Hudson Z. M., Wang S., Liu Z. W., Lu Z. H., Nat. Photonics, 2011, 5, 753CrossRefGoogle Scholar
- [7]Niklas J., Poluektov O. G., Adv. Energy Mater., 2017, 7, 1602226CrossRefGoogle Scholar
- [8]Savikhin V., Babics M., Neophytou M., Liu S., Oosterhout S. D., Yan H., Gu X., Beaujuge P. M., Toney M. F., Chem. Mater., 2018, 30, 7872CrossRefGoogle Scholar
- [9]Zhang S., Ye L., Hou J., Adv. Energy Mater., 2016, 6, 1502529CrossRefGoogle Scholar
- [10]Camposeo A., Del C. P., Persano L., Pisignano D., Adv. Mater., 2012, 24, 221CrossRefGoogle Scholar
- [11]Kamada K., Ohta K., Kubo T., Shimizu A., Morita Y., Nakasuji K., Kishi R., Ohta S., Furukawa S. I., Takahashi H., Nakano M., Angew. Chem. Int. Ed., 2007, 46, 3544CrossRefGoogle Scholar
- [12]Cho S., Lim J. M., Hiroto S., Kim P., Shinokubo H., Osuka A., Kim D., J. Am. Chem. Soc., 2009, 131, 6412CrossRefGoogle Scholar
- [13]Zhao Y. S., Wu J., Huang J., J. Am. Chem. Soc., 2009, 131, 3158CrossRefGoogle Scholar
- [14]Zheng J. Y., Yan Y., Wang X., Shi W., Ma H., Zhao Y. S., Yao J., Adv. Mater., 2012, 24, 194Google Scholar
- [15]Hu R., Zhou F., Zhou T., Shen J., Wang Z., Zhao Z., Qin A., Tang B. Z., Biomaterials, 2018, 187, 47CrossRefGoogle Scholar
- [16]Liu B., Bazan G. C., Chem. Mater., 2004, 16, 4467CrossRefGoogle Scholar
- [17]Grabowski Z. R., Rotkiewicz K., Rettig W., Chem. Rev., 2003, 103, 3899CrossRefGoogle Scholar
- [18]Sasaki S., Drummen G. P. C., Konishi G. I., J. Mater. Chem. C, 2016, 4, 2731CrossRefGoogle Scholar
- [19]Mei J., Hong Y., Lam J. W. Y., Qin A., Tang Y., Tang B. Z., Adv. Mater., 2014, 26, 5429CrossRefGoogle Scholar
- [20]Kucherak O. A., Didier P., Mély Y., Klymchenko A. S., J. Phys. Chem. Lett., 2010, 1, 616CrossRefGoogle Scholar
- [21]Moss K. C., Bourdakos K. N., Bhalla V., Kamtekar K. T., Bryce M. R., Fox M. A., Vaughan H. L., Dias F. B., Monkman A. P., J. Org. Chem., 2010, 75, 6771CrossRefGoogle Scholar
- [22]Sasaki S., Niko Y., Klymchenko A. S., Konishi G. I., Tetrahedron, 2014, 70, 7551CrossRefGoogle Scholar
- [23]Ye J., Chen Z., Fung M. K., Zheng C., Ou X., Zhang X., Yuan Y., Lee C. S., Chem. Mater., 2013, 25, 2630CrossRefGoogle Scholar
- [24]Zhang Z., Edkins R. M., Nitsch J., Fucke K., Eichhorn A., Steffen A., Wang Y., Marder T. B., Chem. Eur. J., 2015, 21, 177CrossRefGoogle Scholar
- [25]Haberhauer G., Gleiter R., Burkhart C., Chem. Eur. J., 2016, 22, 971CrossRefGoogle Scholar
- [26]Haberhauer G., Chem. Eur. J., 2017, 23, 9288CrossRefGoogle Scholar
- [27]Wu H., Pan Y., Zeng J., Du L., Luo W., Zhang H., Xue K., Chen P., Phillips D. L., Wang Z., Qin A., Tang B. Z., Adv. Opt. Mater., 2019, 7, 1900283CrossRefGoogle Scholar
- [28]Chen M., Nie H., Song B., Li L., Sun J. Z., Qin A., Tang B. Z., J. Mater. Chem. C, 2016, 4, 2901CrossRefGoogle Scholar
- [29]Pan L., Wu H., Liu J., Xue K., Luo W., Chen P., Wang Z., Qin A., Tang B. Z., Adv. Opt. Mater., 2019, 7, 1801673CrossRefGoogle Scholar
- [30]Wu H., Zeng J., Xu Z., Zhang B., Zhang H., Pan Y., Wang Z., Ma D., Qin A., Tang B. Z., J. Mater. Chem. C, 2019, 7, 13047CrossRefGoogle Scholar
- [31]Chaskar A., Chen H. F., Wong K. T., Adv. Mater., 2011, 23, 3876CrossRefGoogle Scholar