Advertisement

Uncommon Intramolecular Charge Transfer Effect and Its Potential Application in OLED Emitters

  • Haozhong Wu
  • Juanjuan Luo
  • Zeng Xu
  • Zhiming WangEmail author
  • Dongge Ma
  • Anjun Qin
  • Ben Zhong TangEmail author
Special Issue
  • 14 Downloads

Abstract

Planarized intramolecular charge transfer(PLICT) state can facilitate the fluorescence process thanks to the relative excellent planarity. Recently, we have discovered that the excited state quinone-conformation induced planarization(ESQIP) occurring on tetraphenylpyrazine(TPP) based derivatives could furnish them with PLICT feature. Unlike to the well-known intramolecular charge transfer, strengthening the electron-donating nature on the donor(D) moiety did not impair the PLICT. The calculation results showed that planarization of the TPP based compounds scarcely accompanied with energy wastage while amount of energy was required for the torsion on geometries. In the polar solvents, the energy consumption for planarization could further decrease, but that for twisting structure would increase. To take advantage of the transformation of the frontier orbitals’ distribution, the PLICT type materials would perform a potential application on organic light-emitting diodes(OLEDs).

Keywords

Planarized intramolecular charge transfer Tetraphenylpyrazine Excited state quinone-conformation induced planarization Organic light-emitting diode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_32_MOESM1_ESM.pdf (499 kb)
Uncommon Intramolecular Charge Transfer Effect and Its Potential Application in OLED Emitters

References

  1. [1]
    Gather M. C., Köhnen A., Meerholz K., Adv. Mater., 2011, 23, 233CrossRefGoogle Scholar
  2. [2]
    Hashimoto M., Igawa S., Yashima M., Kawata I., Hoshino M., Osawa M., J. Am. Chem. Soc., 2011, 133, 10348CrossRefGoogle Scholar
  3. [3]
    Tao Y., Yang C., Qin J., Chem. Soc. Rev., 2011, 40, 2943CrossRefGoogle Scholar
  4. [4]
    Uoyama H., Goushi K., Shizu K., Nomura H., Adachi C., Nature, 2012, 492, 234CrossRefGoogle Scholar
  5. [5]
    Vasilopoulou M., Georgiadou D., Pistolis G., Argitis P., Adv. Funct. Mater., 2007, 17, 3477CrossRefGoogle Scholar
  6. [6]
    Wang Z. B., Helander M. G., Qiu J., Puzzo D. P., Greiner M. T., Hudson Z. M., Wang S., Liu Z. W., Lu Z. H., Nat. Photonics, 2011, 5, 753CrossRefGoogle Scholar
  7. [7]
    Niklas J., Poluektov O. G., Adv. Energy Mater., 2017, 7, 1602226CrossRefGoogle Scholar
  8. [8]
    Savikhin V., Babics M., Neophytou M., Liu S., Oosterhout S. D., Yan H., Gu X., Beaujuge P. M., Toney M. F., Chem. Mater., 2018, 30, 7872CrossRefGoogle Scholar
  9. [9]
    Zhang S., Ye L., Hou J., Adv. Energy Mater., 2016, 6, 1502529CrossRefGoogle Scholar
  10. [10]
    Camposeo A., Del C. P., Persano L., Pisignano D., Adv. Mater., 2012, 24, 221CrossRefGoogle Scholar
  11. [11]
    Kamada K., Ohta K., Kubo T., Shimizu A., Morita Y., Nakasuji K., Kishi R., Ohta S., Furukawa S. I., Takahashi H., Nakano M., Angew. Chem. Int. Ed., 2007, 46, 3544CrossRefGoogle Scholar
  12. [12]
    Cho S., Lim J. M., Hiroto S., Kim P., Shinokubo H., Osuka A., Kim D., J. Am. Chem. Soc., 2009, 131, 6412CrossRefGoogle Scholar
  13. [13]
    Zhao Y. S., Wu J., Huang J., J. Am. Chem. Soc., 2009, 131, 3158CrossRefGoogle Scholar
  14. [14]
    Zheng J. Y., Yan Y., Wang X., Shi W., Ma H., Zhao Y. S., Yao J., Adv. Mater., 2012, 24, 194Google Scholar
  15. [15]
    Hu R., Zhou F., Zhou T., Shen J., Wang Z., Zhao Z., Qin A., Tang B. Z., Biomaterials, 2018, 187, 47CrossRefGoogle Scholar
  16. [16]
    Liu B., Bazan G. C., Chem. Mater., 2004, 16, 4467CrossRefGoogle Scholar
  17. [17]
    Grabowski Z. R., Rotkiewicz K., Rettig W., Chem. Rev., 2003, 103, 3899CrossRefGoogle Scholar
  18. [18]
    Sasaki S., Drummen G. P. C., Konishi G. I., J. Mater. Chem. C, 2016, 4, 2731CrossRefGoogle Scholar
  19. [19]
    Mei J., Hong Y., Lam J. W. Y., Qin A., Tang Y., Tang B. Z., Adv. Mater., 2014, 26, 5429CrossRefGoogle Scholar
  20. [20]
    Kucherak O. A., Didier P., Mély Y., Klymchenko A. S., J. Phys. Chem. Lett., 2010, 1, 616CrossRefGoogle Scholar
  21. [21]
    Moss K. C., Bourdakos K. N., Bhalla V., Kamtekar K. T., Bryce M. R., Fox M. A., Vaughan H. L., Dias F. B., Monkman A. P., J. Org. Chem., 2010, 75, 6771CrossRefGoogle Scholar
  22. [22]
    Sasaki S., Niko Y., Klymchenko A. S., Konishi G. I., Tetrahedron, 2014, 70, 7551CrossRefGoogle Scholar
  23. [23]
    Ye J., Chen Z., Fung M. K., Zheng C., Ou X., Zhang X., Yuan Y., Lee C. S., Chem. Mater., 2013, 25, 2630CrossRefGoogle Scholar
  24. [24]
    Zhang Z., Edkins R. M., Nitsch J., Fucke K., Eichhorn A., Steffen A., Wang Y., Marder T. B., Chem. Eur. J., 2015, 21, 177CrossRefGoogle Scholar
  25. [25]
    Haberhauer G., Gleiter R., Burkhart C., Chem. Eur. J., 2016, 22, 971CrossRefGoogle Scholar
  26. [26]
    Haberhauer G., Chem. Eur. J., 2017, 23, 9288CrossRefGoogle Scholar
  27. [27]
    Wu H., Pan Y., Zeng J., Du L., Luo W., Zhang H., Xue K., Chen P., Phillips D. L., Wang Z., Qin A., Tang B. Z., Adv. Opt. Mater., 2019, 7, 1900283CrossRefGoogle Scholar
  28. [28]
    Chen M., Nie H., Song B., Li L., Sun J. Z., Qin A., Tang B. Z., J. Mater. Chem. C, 2016, 4, 2901CrossRefGoogle Scholar
  29. [29]
    Pan L., Wu H., Liu J., Xue K., Luo W., Chen P., Wang Z., Qin A., Tang B. Z., Adv. Opt. Mater., 2019, 7, 1801673CrossRefGoogle Scholar
  30. [30]
    Wu H., Zeng J., Xu Z., Zhang B., Zhang H., Pan Y., Wang Z., Ma D., Qin A., Tang B. Z., J. Mater. Chem. C, 2019, 7, 13047CrossRefGoogle Scholar
  31. [31]
    Chaskar A., Chen H. F., Wong K. T., Adv. Mater., 2011, 23, 3876CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong ProvinceSouth China University of Technology(SCUT)GuangzhouP. R. China
  2. 2.School of Petrochemical EngineeringShenyang University of Technology(SUT)LiaoyangP. R. China
  3. 3.Department of ChemistryThe Hong Kong University of Science & Technology(HKUST)Kowloon, Hong KongP. R. China

Personalised recommendations