Advertisement

Electrochemical Detection of Superoxide Anion Released by Living Cells by Manganese(III) Tetraphenyl Porphine as Superoxide Dismutase Mimic

  • Min Cui
  • Jujie RenEmail author
  • Xiaofang Wen
  • Na Li
  • Yifei Xing
  • Cong Zhang
  • Yuanyuan Han
  • Xueping JiEmail author
Article
  • 2 Downloads

Abstract

Superoxide anion, one of the most active reactive oxygen species, is associated with the development of many diseases. So monitoring superoxide anion in living cells is of great significance for the pathological research of many diseases. In this work, a new non-enzymatic sensor for the detection of superoxide anion(O2•−) was developed, which was fabricated by the nanocomposites composed of manganese(III) tetraphenyl porphine(MnTPP) as superoxide dismutase mimic and electrochemical reduced graphene oxide(ERGO) as electrode support material to modify the glassy carbon electrode(GCE). The electrochemical behavior of the fabricated electrode(MnTPP/ERGO/GCE) was performed by electrochemical impedance spectroscopy(EIS) and cyclic voltammetry(CV), which revealed that MnTPP/ERGO/GCE possessed good catalytic ability to the electrochemical reduction of O2•−. The MnTPP/ERGO/GCE showed excellent electroanalysis performance towards O2•− using the technique of differential pulse voltammetry(DPV) with a linear relationship in the range of 0.2–110.0 µmol/L, a sensitivity of 445 µA·L·mmol−1·cm−2 and a detection limit of 0.039 µmol/L(S/N=3). The real-time monitoring of O2•− from MCF-7 breast cancer cells stimulated by zymosan was realized in this work, which indicates that the MnTPP/ERGO/GCE hold potential application for electrochemical quantification of superoxide anions in biological applications.

Keywords

Superoxide anion Electrochemical sensor Manganese(III) tetraphenyl porphine Electrochemical reduced graphene oxide MCF-7 breast cancer cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Reaume A. G., Elliott J. L., Hoffman E. K., Kowall N. W., Ferrante R. J., Siwek D. F., Wilcox H. M., Flood D. G., Beal M. F., Brown R. H., Scott R. W., Snider W. D., Nat. Genet., 1996, 13(1), 43PubMedCrossRefPubMedCentralGoogle Scholar
  2. [2]
    Tong L., Chuang C. C., Wu S., Zuo L., Cancer Lett., 2015, 367(1), 18PubMedCrossRefPubMedCentralGoogle Scholar
  3. [3]
    Maier C. M., Chan P. H., The Neuroscientist, 2002, 8(4), 323PubMedCrossRefPubMedCentralGoogle Scholar
  4. [4]
    Uttara B., Singh A. V., Zamboni P., Mahajan R. T., Curr. Neuropharmacol., 2009, 7(1), 65PubMedPubMedCentralCrossRefGoogle Scholar
  5. [5]
    Wang W., Fang H., Groom L., Cheng A., Zhang W., Liu J., Wang X., Li K., Han P., Zheng M., Yin J., Wang W., Mattson M. P., Kao J. P., Lakatta E. G., Sheu S. S., Ouyang K., Chen J., Dirksen R. T., Cheng H., Cell, 2008, 134(2), 279PubMedPubMedCentralCrossRefGoogle Scholar
  6. [6]
    Zhao F., Gu W., Zhou J., Liu Q., Chong Y., J. Environ. Sci. Heal. C, 2019, 1Google Scholar
  7. [7]
    Warwar N., Mor A., Fluhr R., Pandian R. P., Kuppusamy P., Biophys. J., 2011, 101(6), 1529PubMedPubMedCentralCrossRefGoogle Scholar
  8. [8]
    Magnani L., Gaydou E. M., Hubaud J. C., Anal. Chim. Acta, 2000, 411(1/2), 209CrossRefGoogle Scholar
  9. [9]
    Ukeda H., Shimamura T., Tsubouchi M., Harada Y., Nakai Y., Sawamura M., Anal. Sci., 2002, 18(10), 1151PubMedCrossRefPubMedCentralGoogle Scholar
  10. [10]
    Yamaguchi S., Kishikawa N., Ohyama K., Ohba Y., Kohno M., Masuda T., Takadate A., Nakashima K., Kuroda N., Anal. Chim. Acta, 2010, 665(1), 74PubMedCrossRefPubMedCentralGoogle Scholar
  11. [11]
    Reichl S., Vocks A., Petkovic M., Schiller J., Arnhold J., Free Radical Res., 2001, 35(6), 723CrossRefGoogle Scholar
  12. [12]
    Diez L., Livertoux M. H., Stark A. A, Wellman-Rousseau M., Leroy P., J. Chromatogr. B: Biomed. Sci. Appl., 2001, 763(1/2), 185CrossRefGoogle Scholar
  13. [13]
    Wang L., Liu S., Zheng Z., Pi Z., Song F., Liu Z., Anal. Methods, 2015, 7(4), 1535CrossRefGoogle Scholar
  14. [14]
    Hu J. J., Wong N. K., Ye S., Chen X. M., Lu M. Y., Zhao A. Q., Guo Y. H., Ma A. C. H., Leung A. Y. H., Shen J. G., Yang D., J. Am. Chem. Soc., 2015, 137(21), 6837PubMedCrossRefPubMedCentralGoogle Scholar
  15. [15]
    Ohyashiki T., Nunomura M., Katoh T., BBA—Biomembranes, 1999, 1421(1), 131PubMedCrossRefPubMedCentralGoogle Scholar
  16. [16]
    Shen X., Wang Q., Liu Y., Xue W., Ma L., Feng S., Wan M., Wang F., Mao C., Sci. Rep, 2016, 6, 144Google Scholar
  17. [17]
    Wu T., Li L., Song G., Ran M., Lu X., Liu X., Microchim. Acta, 2019, 186(3), 198CrossRefGoogle Scholar
  18. [18]
    Liu X., Ran M., Liu G., Liu X., Xue Z., Lu X., Talanta, 2018, 186, 248PubMedCrossRefGoogle Scholar
  19. [19]
    Kim S.K., Kim D., You J. M., Han H. S., Jeon S., Electrochim. Acta, 2012, 81, 31CrossRefGoogle Scholar
  20. [20]
    Zhu X., Niu X., Zhao H., Tang J., Lan M., Biosens. Bioelectron., 2015, 67, 79PubMedCrossRefPubMedCentralGoogle Scholar
  21. [21]
    Tang J., Zhu X., Niu X., Liu T., Zhao H., Lan M., Talanta, 2015, 137, 18PubMedCrossRefPubMedCentralGoogle Scholar
  22. [22]
    Liu Y., Liu X., Liu Y., Liu G., Ding L., Lu X., Biosens. Bioelectron., 2017, 90, 39PubMedCrossRefPubMedCentralGoogle Scholar
  23. [23]
    Deng Z., Rui Q., Yin X., Liu H., Tian Y., Anal. Chem., 2008, 80, 5839PubMedCrossRefPubMedCentralGoogle Scholar
  24. [24]
    Rajesh S., Kanugula A. K., Bhargava K., Ilavazhagan G., Kotamraju S., Karunakaran C., Biosens. Bioelectron., 2012, 26(2), 689CrossRefGoogle Scholar
  25. [25]
    Salimi A., Noorbakhsh A., Rafiee-Pour H. A., Electroanal., 2011, 23(3), 683Google Scholar
  26. [26]
    Archibald F. S., Fridovich I., Arch. Biochem. Biophys., 1982, 214(2), 452PubMedCrossRefPubMedCentralGoogle Scholar
  27. [27]
    Barnese K., Gralla E. B., Valentine J. S., Cabelli D. E., Proc. Natl. Acad. Sci. USA, 2012, 109(18), 6892PubMedCrossRefPubMedCentralGoogle Scholar
  28. [28]
    Wang M. Q., Ye C., Bao S. J., Xu M. W., Microchim. Acta, 2017, 184(4), 1177CrossRefGoogle Scholar
  29. [29]
    Ding A., Liu F., Zheng J., Chen J., Li C., Wang B., Macromol. Mater. Eng., 2018, 303(6), 1800079CrossRefGoogle Scholar
  30. [30]
    Guo X. M., Guo B., Li C., Wang Y. L., J. Electroanal. Chem., 2016, 783, 8CrossRefGoogle Scholar
  31. [31]
    Sebarchievici I., Tăranu B. O., Birdeanu M., Rus S. F., Appl. Surf. Sci., 2016, 390, 131CrossRefGoogle Scholar
  32. [32]
    Miriyala S., Spasojevic I., Tovmasyan A., Salvemini D., Vujaskovic Z., Clair D. S., Batinic-Haberle I., BBA—Mol. Basis Dis., 2012, 1822(5), 794CrossRefGoogle Scholar
  33. [33]
    Cui M., Xu B., Hu C., Hui B. S., Qu L., Electrochim. Acta, 2013, 98, 48CrossRefGoogle Scholar
  34. [34]
    Chen L., Tang Y., Wang K., Liu C., Luo S., Electrochem. commun.2011, 13(2), 133CrossRefGoogle Scholar
  35. [35]
    Yang L., Liu D., Huang J., You T., Sensor. Actuat. B: Chem., 2014, 193, 166CrossRefGoogle Scholar
  36. [36]
    Ren J., Yu C., Cui M., Li Y., Wu C., Ji X., Chinese J. Anal. Chem., 2017, 45(1), 104Google Scholar
  37. [37]
    Thandavan K., Gandhi S., Sethuraman S., Rayappan J. B. B., Krishnan U. M., Sensor. Actuat. B: Chem., 2013, 176, 884CrossRefGoogle Scholar
  38. [38]
    Wang M., Wang Q., Zhu W., Yang Y., Zhou H., Zhang F., Razal J. M., Wallace G. G., Chen J., Green Energ. Environ., 2017, 2(3), 285CrossRefGoogle Scholar
  39. [39]
    Ehret R., Baumann W., Brischwein M., Schwinde A., Stegbauer K., Wolf B., Biosens. Bioelectron., 1997, 12(1), 29PubMedCrossRefPubMedCentralGoogle Scholar
  40. [40]
    Zhang Y., Yun Z., Wang H., Yan B., Shen G., Yu R., J. Electroanal. Chem., 2009, 627(1/2), 9CrossRefGoogle Scholar
  41. [41]
    Dashtestani F., Ghourchian H., Eskandari K., Rafiee-Pour H. A., Microchim. Acta, 2015, 182(5/6), 1045CrossRefGoogle Scholar
  42. [42]
    Santhosh P., Manesh K. M., Lee S. H., Uthayakumar S., Gopalan A. I., Lee K. P., Analyst, 2011, 136(8), 1557PubMedCrossRefPubMedCentralGoogle Scholar
  43. [43]
    Rafiee-Pour H. A., Noorbakhsh A., Salimi A., Ghourchian H., Electroanal., 2010, 22(14), 1599CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.Department of Chemistry, School of SciencesHebei University of Science and TechnologyShijiazhuangP. R. China
  2. 2.Department of Medical ChemistryHebei Medical UniversityShijiazhuangP. R. China

Personalised recommendations