Advertisement

Two Pentavanadate-based Organic-inorganic Materials with Third-order NLO Properties

  • Yanzhao Yu
  • Jiapeng Cao
  • Yan XuEmail author
Article
  • 11 Downloads

Abstract

Two isolated organic-inorganic pentavanadate-based hybrids, \({\rm[H_2N(CH_3)_2]_{6.34}[V^V(\mu_3-O)_4V^{IV}_4O_5(SO_4)_4]\cdot(SO_4)_{0.67}\cdot(DMF)\cdot[HN(CH_3)_2]_{1.66}}\)(1) and [(HN)2(CH2)2(CH3)4][VV(μ3-O)4V4IVO5(SO4)4][H2N(CH3)2]3·(DMF)· [HN(CH3)2]0.5(2)(DMF=N,N-dimethylformamide) have been synthesized under solvothermal conditions and structu-rally characterized. In compound 1, three adjacent basic units form a triangle type cluster. The symmetric double-layer exists in compound 2. The study of the third-order nonlinear optical(NLO) properties for the two compounds demonstrates that the two-photon absorption(TPA) cross-section σ values of compounds 1 and 2 are 1372 and 1228 GM, respectively, indicating that both compounds may have potential application in optical field.

Keywords

Pentavanadate Third-order nonlinear optical property Crystal structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hayashi Y., Coord. Chem. Rev., 2011, 255, 2270CrossRefGoogle Scholar
  2. [2]
    Kioseoglou E., Petanidis S., Gabriel C., Salifoglou A., Coord. Chem. Rev., 2015, 301, 87CrossRefGoogle Scholar
  3. [3]
    Monakhov K. Y., Bensch W., Kögerler P., Chem. Soc. Rev., 2015, 44, 8443CrossRefGoogle Scholar
  4. [4]
    Inoue Y., Kodama S., Taya N., Sato H., Oh-ishi K., Ishii Y., Inorg. Chem., 2018, 57, 7491CrossRefGoogle Scholar
  5. [5]
    Chen J. J., Ye J. C., Zhang X. G., Symes M. D., Fan S. C., Long D. L., Zheng M. S., Wu D. Y., Croni L., Dong Q. F., Adv. Energy Mater., 2018, 8, 1701021CrossRefGoogle Scholar
  6. [6]
    Li J. K., Huang X. Q., Yang S., Ma H. W., Chi Y. N., Hu C. W., Inorg. Chem., 2015, 54, 1454CrossRefGoogle Scholar
  7. [7]
    Notario-Estévez A., Kozłowski P., Linnenberg O., Coen D. G., López X., Monakhov K. Y., Phys. Chem. Chem. Phys., 2018, 20, 17847CrossRefGoogle Scholar
  8. [8]
    Cao J. P., Shen F. C., Luo X. M., Cui C. H., Lan Y. Q., Xu Y., RSC Adv., 2018, 8, 18560CrossRefGoogle Scholar
  9. [9]
    Tao J., Zhang X. M., Tong M. L., Chen X. M., Dalton. Trans., 2001, 6, 770CrossRefGoogle Scholar
  10. [10]
    Xiao D. R., Hou Y., Wang E. B., Li Y. G., Lu J., Xu L., Hu C. W., J. Mol. Struct., 2004, 69, 123CrossRefGoogle Scholar
  11. [11]
    Xiao D. R., Xu Y., Hou Y., Wang E. B., Wang S. T., Li Y. G., Xu L., Hu C. W., Eur. J. Inorg. Chem., 2004, 7, 1385CrossRefGoogle Scholar
  12. [12]
    Chen L., Jiang F. L., Lin Z. Z., Zhou Y. F., Yue C. Y., Hong M. C., J. Am. Chem. Soc., 2005, 127, 8588CrossRefGoogle Scholar
  13. [13]
    Karet G. B., Sun Z. M, Streib W. E., Bollinger J. C., Hendrickson D. N., Christou G., Chem. Comm., 1999, 22, 2249CrossRefGoogle Scholar
  14. [14]
    Khan M. I., Ayesh S., Doedens R. J., Yu M. H., O’Connor C. J., Chem. Commun., 2005, 36, 49Google Scholar
  15. [15]
    Liu X., Yi X. H., Zhang F., Chem. Inform., 2011, 42, 12Google Scholar
  16. [16]
    Zhang H. M., Yang J., Kan W. Q., Liu Y. Y., Ma J. F., Cryst. Growth Des. 2016, 16, 265CrossRefGoogle Scholar
  17. [17]
    Campbell M. L., Sulejmanovic D., Schiller J. B., Turner E M., Shiou-Jyh H., Whitehead D. C., Helv. Chim. Acta, 2017, 100, e1600338CrossRefGoogle Scholar
  18. [18]
    Ma H., Jen A. K. Y., Dalton L. R., Adv. Mater., 2002, 14, 1339CrossRefGoogle Scholar
  19. [19]
    Spasenović M., Betz M., Costa L., van Driel H. M., Phys. Rev. B, 2008, 77, 085201CrossRefGoogle Scholar
  20. [20]
    Senthil K., Kalainathan S., Kumar A. R., Aravindan P. G., RSC Adv., 2014, 4, 56112CrossRefGoogle Scholar
  21. [21]
    Qian Y., Xiao G. M., Wang G., Lin B. P., Cui Y. P., Sun Y. M., Dyes Pigm., 2007, 75, 218CrossRefGoogle Scholar
  22. [22]
    Chen S. H., Qin Z. H., Liu T. F., Wu X. Z., Li Y. J., Liu H. B., Song Y. L., Li Y. L., Phys. Chem. Chem. Phys., 2013, 15, 12660CrossRefGoogle Scholar
  23. [23]
    Al-Yasari A., Steerteghem N. V., Moll H. E., Clays K., Fielden J., Dalton Trans., 2016, 45, 2818CrossRefGoogle Scholar
  24. [24]
    Sheldrick G. M., SADABS, Program for Bruker Area Detector Absorption Correction, University of Göttingen, Göttingen, Germany, 1997Google Scholar
  25. [25]
    Sheldrick G. M., SHELXL-2014, Program for Structure Refinement, Universität of Göttingen, Göttingen, Germany, 2014Google Scholar
  26. [26]
    Zhang Y. T., Wang X. L., Zhou E. L., Wu X. S., Song B. Q., Shao K. Z., Su Z. M., Dalton Trans., 2016, 45, 3698CrossRefGoogle Scholar
  27. [27]
    Zhang Y. T., Wang X. L., Li S. B., Song B. Q., Shao K. Z., Su Z. M., Inorg. Chem., 2016, 55, 8770CrossRefGoogle Scholar
  28. [28]
    Breen J. M., Clérac R., Zhang L., Cloonan S. M., Kennedy E., Fee-ney M., McCabe T., Williams D. C., Schmitt W., Dalton Trans., 2012, 41, 2918CrossRefGoogle Scholar
  29. [29]
    Brown I. D., Chem. Rev., 2009, 109, 6858CrossRefGoogle Scholar
  30. [30]
    Karet G. B., Sun Z. M., Heinrich D. D., McCusker J. K., Folting K., Streib W. E., Huffman J. C., Hendrickson D. N., Christou G., Inorg. Chem., 1996, 35, 6450CrossRefGoogle Scholar
  31. [31]
    Zhang Z. J., Wojtas L., Zaworotko M. J., Chem. Sci., 2014, 5, 927CrossRefGoogle Scholar
  32. [32]
    Cao J. P., Xiong Y., Luo X. M., Chen L., Shi J., Zhou M. J., Xu Y., Dalton Trans., 2018, 47, 6054CrossRefGoogle Scholar
  33. [33]
    Luo X. M., Chen L, Dong Y. Y., Li. J., Cui C. H., Cao J. P., Xu Y., Dalton Trans., 2018, 47, 9504CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech UniversityNanjingP. R. China

Personalised recommendations