Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 871–876 | Cite as

Facile Synthesis of Fe3Pt-Ag Nanocomposites for Catalytic Reduction of Methyl Orange

  • Donglai Han
  • Boxun Li
  • Guoliang Xing
  • Yuanyuan Zhang
  • Yue Chen
  • Yantao Sun
  • Yongjun Zhang
  • Yang LiuEmail author
  • Jinghai YangEmail author


The polyethyleneimine dithiocarbamate was employed as polymers to synthesize Fe3Pt-Ag nanocomposites by using the seed deposition method. Fe3Pt-Ag nanocomposites were utilized for the catalytic degradation of methyl orange(MO) in the presence of NaBH4. Fe3Pt-Ag nanocomposites showed good chemical catalytic activity and stability in pollutants degradation. Furthermore, Fe3Pt-Ag nanocomposites can keep their efficiency till four cycles. The results suggest that the nanocatalysts with recyclability have broad prospects in environmental conservation applications.


Fe3Pt-Ag nanocomposite Methyl orange Catalytic reduction Magnetic property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Haquea E., Lee J. E., Jang I. T., Hwang Y. K., Chang J. S., Jegal J., Jhunga S. H., J. Hazard Mater., 2010, 181(1), 535CrossRefGoogle Scholar
  2. [2]
    Li X., Wang Z., Ning J., Gao M., Jiang W., Zhou Z., Li G., J. Environ. Manage., 2018, 217, 305CrossRefGoogle Scholar
  3. [3]
    Lutsyk P., Arif R., Light-Sci. Appl., 2016, 5, e16028CrossRefGoogle Scholar
  4. [4]
    Cao C., Xiao L., Chen C., Cao Q., Appl. Surf. Sci., 2015, 333, 110CrossRefGoogle Scholar
  5. [5]
    Jung H., Park M., Dai Y., Light: Sci. Appl., 2016, 5, e16009CrossRefGoogle Scholar
  6. [6]
    Dai Z. G., Xiao X. H., Light: Sci. Appl., 2015, 4, e342CrossRefGoogle Scholar
  7. [7]
    Xu H., Song P., Wang J., Du Y., Langmuir, 2018, 34(27), 7981CrossRefGoogle Scholar
  8. [8]
    Singh S. K., Xu Q., Inorg. Chem., 2010, 49(13), 6148CrossRefGoogle Scholar
  9. [9]
    Zhou L., Gao C., Xu W., Langmuir, 2010, 26(13), 11217CrossRefGoogle Scholar
  10. [10]
    Ma X. C., Dai Y., Light: Sci. Appl., 2016, 5, e16017CrossRefGoogle Scholar
  11. [11]
    Pincella F., Isozaki K., Light: Sci. Appl., 2014, 3, e133CrossRefGoogle Scholar
  12. [12]
    Soomro R. A., Nafady A., Uddin S., Sherazi S. T. H., Kalwar N. H., Shah M. R., Hallam K. R., J. Nanomater., 2015, 2015(1), 120Google Scholar
  13. [13]
    Khan M. M., Lee J., Cho M. H., J. Ind. Eng. Chem., 2014, 20(4), 1584CrossRefGoogle Scholar
  14. [14]
    Bae S., Gim S., Kim H., Hanna K., Appl. Catal. B: Environ., 2016, 182, 541CrossRefGoogle Scholar
  15. [15]
    Liu Y., Zhang Y. Y., Kou Q. W., Chen Y., Sun Y. T., Han D. L., Wang D. D., Lu Z. Y., Chen L., Yang J. H., Xing G. X., Nanomaterials, 2018, 8(5), 329CrossRefGoogle Scholar
  16. [16]
    Chen Y., Zhang Y. Y., Kou Q. W., Liu Y., Han D. L., Wang D. D., Sun Y. T., Zhang Y. J., Wang Y. X., Lu Z. Y., Chen L., Yang J. H., Xing G. X., Nanomaterials, 2018, 8(5), 353CrossRefGoogle Scholar
  17. [17]
    Bu T., Ma X., Zhao B., Song W., Chem. Res. Chinese Universities, 2018, 34(2), 290CrossRefGoogle Scholar
  18. [18]
    Sui C., Wang Z., Wang C., Zhou G., Cheng T., Chem. Res. Chinese Universities, 2016, 32(5), 854CrossRefGoogle Scholar
  19. [19]
    Wang L., Chen Q. D., Light: Sci. Appl., 2017, 6, e17112CrossRefGoogle Scholar
  20. [20]
    Li D. B., Sun X. J., Light: Sci. Appl., 2017, 6, e17038CrossRefGoogle Scholar
  21. [21]
    Galanty M., Shavit O., Light: Sci. Appl., 2018, 7, 49CrossRefGoogle Scholar
  22. [22]
    Atarod M., Nasrollahzadeh M., Sajadi S. M., J. Colloid Interf. Sci., 2016, 462, 272CrossRefGoogle Scholar
  23. [23]
    Naraginti S., Stephen F. B., Radhakrishnan A., Sivakumar A., Spec-trochim A. A., Spectrochim. Acta. A, 2015, 135(5), 814CrossRefGoogle Scholar
  24. [24]
    Lu Z. Y., Yu Z. H., Chem. Eng. J., 2018, 337, 228CrossRefGoogle Scholar
  25. [25]
    Lu Z. Y., He M., Chem. Eng. J., 2018, 249, 15CrossRefGoogle Scholar
  26. [26]
    Dong K. F., Deng J. Y., Light: Sci. Appl., 2016, 6, 34637Google Scholar
  27. [27]
    Makihara K., Kato T., Light: Sci. Appl., 2016, 6, 33409Google Scholar
  28. [28]
    Kim J., Lee Y., Sun S., J. Am. Chem. Soc., 2010, 132(14), 4996CrossRefGoogle Scholar
  29. [29]
    Prabhudev S., Bugnet M., Bock C., Botton G. A., Acs. Nano., 2013, 7(7), 6103CrossRefGoogle Scholar
  30. [30]
    Liu Y., Kou Q. W., Wang D. D., Chen L., Sun Y. T., Lu Z. Y., Zhang Y. Y., Wang Y. X., Yang J. H., Xing G. Z., J. Mater. Sci., 2017, 52, 10163CrossRefGoogle Scholar
  31. [31]
    Liu Y., Jiang Y. H., Zhang X. L., Wang Y. X., Zhang Y. J., Liu H. L., Zhai H. J., Liu Y. Q., Yang J. H., J. Solid. State. Chem., 2014, 209, 69CrossRefGoogle Scholar
  32. [32]
    Liu Y., Zhang Y. Y, Kou Q. W., Wang D. D., Han D. L., Lue Z. Y., Chen Y., Chen L., Wang Y. X., Zhang Y., Yang J. H., Xing F. S., Powder Technol., 2018, 338, 26CrossRefGoogle Scholar
  33. [33]
    Yang J., Lee J. Y., Too H. P., J. Phys. Chem. B., 2015, 109(41), 19208CrossRefGoogle Scholar
  34. [34]
    Yang J. H., Jiang Y. H., Liu Y., Zhang X. L., Wang Y. X., Zhang Y. J., Wang J., Li W., Cheng X., J. Solid. State. Chem., 2013, 215(3), 167Google Scholar
  35. [35]
    Lu Z. Y., Zhu Z., Catal. Sci. Technol., 2016, 6, 1367CrossRefGoogle Scholar
  36. [36]
    Lu Z. Y., Zhao X. X., Chem-Eur. J., 2015, 21, 18528CrossRefGoogle Scholar
  37. [37]
    Suber L., Imperatori P., Bauer E. M., Porwal R., Peddis D., J. Alloy. Compd., 2016, 663, 601CrossRefGoogle Scholar
  38. [38]
    Fei J., Li J., Adv. Mater., 2015, 27(2), 314CrossRefGoogle Scholar
  39. [39]
    Wang X., Xue J., Wang X., Liu X., PLoS One, 2017, 12(5), e0176332CrossRefGoogle Scholar
  40. [40]
    Hsieh S., Lin P., J. Nanopart. Res., 2012, 14, 956CrossRefGoogle Scholar
  41. [41]
    Yu H., Chen M., M. Rice P., X. Wang S., White R. L., Nano. Lett., 2005, 5(2), 379Google Scholar
  42. [42]
    Wu J., Hou Y., Gao S., Nano. Res., 2011, 4, 836CrossRefGoogle Scholar
  43. [43]
    Liu Y., Chen Y., Zhang Y. Y., Kou Q. W., Zhang Y. J., Wang Y. X., Chen L., Sun Y. T., Zhang H. L., MeeJung Y., Powder Technol., 2017, 319, 53CrossRefGoogle Scholar
  44. [44]
    Yang J. H., Kou Q. W., Liu Y., Wang D. D., Lu Z. Y., Chen L., Zhang Y. Y., Wang Y. X., Zhang Y. J., Han D. L., Xing G. Z., Molecules, 2018, 23(6), 1330CrossRefGoogle Scholar
  45. [45]
    Zhang L., Takahashi Y. K., Perumal A., Hono K., J. Magn. Magn. Mater., 2010, 322(18), 2658CrossRefGoogle Scholar
  46. [46]
    Cui Z., Fu G., Li Y., Goodenough J. B., Angew. Chem. Int. Edit., 2017, 56(33), 9901CrossRefGoogle Scholar
  47. [47]
    Hardiansyah A., Chen A. Y., Liao H. L., Yang M. C., Liu T. Y., Na-noscale Res. Lett., 2015, 10(1), 412CrossRefGoogle Scholar
  48. [48]
    Mohapatra S., Phys. Chem. Chem. Phys., 2016, 18(5), 3878CrossRefGoogle Scholar
  49. [49]
    Pavlovaa O. P., Verbitskaa T. I., Vladymyrskyia I. A., Sidorenkoa S. I., Katonab G. L., Bekeb D. L., Beddiesc G., Albrechtc M., Makogo-na I. M., Appl. Surf. Sci., 2013, 266(13/14), 100Google Scholar
  50. [50]
    Ali F., Khan S. B., Kamal T., Alamry K., Asiri A., Sci. Rep., 2018, 8(1), 6260CrossRefGoogle Scholar
  51. [51]
    Vellaichamy B., Periakaruppan P., Rcs. Adv., 2016, 6(38), 31653Google Scholar
  52. [52]
    Pan D., Shengsong Ge S., Zhao J., Shao Q., Guo L., Zhang X., Lin J., Xu G., Guod Z., Dalton T., 2018, 47, 9765CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Donglai Han
    • 1
  • Boxun Li
    • 1
  • Guoliang Xing
    • 2
  • Yuanyuan Zhang
    • 3
  • Yue Chen
    • 3
  • Yantao Sun
    • 3
  • Yongjun Zhang
    • 3
  • Yang Liu
    • 3
    Email author
  • Jinghai Yang
    • 3
    Email author
  1. 1.School of Materials Science and EngineeringChangchun University of Science and TechnologyChangchunP. R. China
  2. 2.Jilin Special Equipment Inspection and Research InstituteJilinP. R. China
  3. 3.Key Laboratory of Functional Materials Physics and Chemistry, Ministry of EducationJilin Normal UniversityChangchunP. R. China

Personalised recommendations