Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 939–944 | Cite as

Molecular Dynamics Simulation: Influence of External Electric Field on Bubble Interface in Air Flotation Process

  • Leichao Wu
  • Yong HanEmail author
  • Qianrui Zhang
  • Lin Zhu
  • Chuanxin Zhang
  • Ruikuan Zhao
Article
  • 30 Downloads

Abstract

Molecular dynamics(MD) simulation was performed to investigate the influence of external electric field on the vapour-liquid interface of the bubble during the process of toluene separation by air flotation. The physico-chemical properties of vapour-liquid interface, surface tension, probability of a hydrogen bonding near the vapour-liquid interface and the viscosity of liquid phase caused by external electric field were analyzed. The results show that the angle between the water molecule dipole moment and the normal z axis in the vapour phase changes smaller when the external electric field is applied. The surface tension and the probability of hydrogen bonding near the vapour-liquid interface increase with the increase of electric field strength. And the viscosity also increases under an external electric field. The results confirm that the external electric field has a positive effect on the performance of bubbles in air flotation, which may provide useful guidance for the combination of electric field and air flotation technology.

Keywords

Molecular dynamics simulation Vapour-liquid interface Air flotation Electric field Toluene 

References

  1. [1]
    Silva S. S. D., Chiavone-Filho O., Neto E. L. D. B., Nascimento C. A. O., J. Hazard. Mater., 2012, s199/200(2), 151Google Scholar
  2. [2]
    Bensadok K., Belkacem M., Nezzal G., Desalination, 2007, 206(1), 440Google Scholar
  3. [3]
    Lima L. M. O. D., Silva J. H. D., Patricio A. A. R., Neto E. L. D. B., Neto A. A. D., Dantas T. N. D. C., Petrol. Sci. Technol., 2008, 26(9), 994Google Scholar
  4. [4]
    Li X. B., Liu J. T., Wang Y. T., Wang C. Y., Zhou X. H., J. China Univ. Mining Technol., 2007, 17(4), 546Google Scholar
  5. [5]
    Takahashi M., J. Phys. Chem. B., 2005, 109(46), 21858Google Scholar
  6. [6]
    Yuan S. L., Chen Y. J., Xu G. Y., Colloid. Surface. A, 2006, 280(1), 108Google Scholar
  7. [7]
    Lewis M. A., Water. Res., 1991, 25(1), 101Google Scholar
  8. [8]
    Mckim J. M., Arthur J. W., Thorslund T. W. B., Environ. Contam. Tox., 1975, 14(1), 1Google Scholar
  9. [9]
    Dolan J. M., Hendricks A. C., J. Water. Pollut. Control. Fed., 1976, 48(11), 2570Google Scholar
  10. [10]
    Thiebaut J. M., Vaubourg J. P., Roussy G., J. Phys. D. Appl. Phys., 1989, 22(1), 154Google Scholar
  11. [11]
    Birinci M., Miller J. D., Sarikaya M., Wang X., Miner. Eng., 2010, 23(10), 813Google Scholar
  12. [12]
    Murugananthan M., Raju G. B., Prabhakar S., Sep. Purif. Technol., 2004, 40(1), 69Google Scholar
  13. [13]
    Van D. S. D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berend-sen H. J., J. Comput. Chem., 2005, 26(16), 1701Google Scholar
  14. [14]
    Hu Y. D., Environ. Engine., 2012, s2, 127Google Scholar
  15. [15]
    Agarwal A., Ng W. J., Liu Y., Chemosphere, 2011, 84(9), 1175Google Scholar
  16. [16]
    Craig V. S. J., Soft Matter, 2010, 7(1), 40Google Scholar
  17. [17]
    Du H., Rasaiah J. C., Miller J. D., J. Phys. Chem. B, 2007, 111(1), 209Google Scholar
  18. [18]
    Berendsen H. J. C., Grigera J. R., Straatsma T. P., J. Phys. Chem., 1987, 91(24), 6269Google Scholar
  19. [19]
    Vega C., Miguel E. D., J. Chem. Phys., 2007, 126(15), 154707Google Scholar
  20. [20]
    Chen F., Smith P. E., J. Chem. Phys., 2007, 126(22), 221101Google Scholar
  21. [21]
    Jorgensen W. L., David S. M., Tiradorives J., J. Am. Chem. Soc., 1996, 118(45), 11225Google Scholar
  22. [22]
    Dodda L. S., Cabeza D. V. I., Tiradorives J., Jorgensen W. L., Nucleic Acids Res., 2017, 45(W1), 331Google Scholar
  23. [23]
    Iseleholder R. E., Mitchell W., Ismail A. E., J. Chem. Phys., 2012, 137(17), 1133Google Scholar
  24. [24]
    Zhao L., Lin S., Mendenhall J. D., Yuet P. K., Blankschtein D., J. Phys. Chem B., 2011, 115(19), 6076Google Scholar
  25. [25]
    Smith P. E., Gunsteren W. F. V., Chem. Phys. Lett., 1993, 215(4), 315Google Scholar
  26. [26]
    Yuet P. K., Blankschtein D., J. Phys. Chem B, 2010, 114(43), 13786Google Scholar
  27. [27]
    Geissler P. L., Annu. Rev. Phys. Chem., 2013, 64(1), 317Google Scholar
  28. [28]
    Fan Y., Chen X., Yang L., Cremer P. S., Gao Y. Q., J. Phys. Chem. B, 2009, 113(34), 11672Google Scholar
  29. [29]
    Hess B., J. Chem. Phys., 2002, 116(1), 209Google Scholar
  30. [30]
    Zhao L., Cheng T., Sun H., J. Chem. Phys., 2008, 129(14), 144501Google Scholar
  31. [31]
    Zhu L., Han Y., Zhang C., Zhao R., Tang S., RSC Adv., 2017, 7(75), 47583Google Scholar
  32. [32]
    Song Y. M., Lenore L. D., Mol. Simul., 2010, 36(7/8), 560Google Scholar
  33. [33]
    Savinykh B. V., Zarinov R. N., Usmanov A. G., J. Engine Phys., 1983, 45(6), 1412Google Scholar
  34. [34]
    Ostapenko A. A., Tech. Phys. 1998, 43(1), 35Google Scholar
  35. [35]
    Wei S., Zhong C., Su Y. H., Mol. Simul., 2005, 31(8), 555Google Scholar
  36. [36]
    Xu J. H., Li S. W., Chen G. G., Luo G. S., Aiche. J., 2006, 52(6), 2254Google Scholar
  37. [37]
    Geiger A., Stillinger F. H., Rahman A., J. Chem. Phys., 1979, 70(9), 4185Google Scholar
  38. [38]
    Sciortino F., Geiger A., Stanley H. E., J. Chem. Phys., 1992, 96(5), 3857Google Scholar
  39. [39]
    Zhang X., Zhang Q., Zhao D. X., Acta Phys-Chim. Sin., 2011, 27(27), 2547Google Scholar
  40. [40]
    Liu P., Harder E., Berne B. J., J. Phys. Chem B, 2005, 109(7), 2949Google Scholar
  41. [41]
    Kunieda M., Nakaoka K., Liang Y., Miranda C. R., Ueda A., Taka-hashi S., J. Am. Chem. Soc., 2010, 132(51), 18281Google Scholar
  42. [42]
    Harris J. G., J. Phys. Chem., 1992, 96(12), 5077Google Scholar
  43. [43]
    Ismail A. E., Grest G. S., Stevens M. J., J. Chem. Phys., 2006, 125(10), 014702Google Scholar
  44. [44]
    Bateni A., Amirfazli A., Neumann A. W., Colloid Surface A, 2006, 289(1), 25Google Scholar
  45. [45]
    Bateni A., Susnar S. S., Amirfazli A., Neumann A. W., Langmuir, 2004, 20(18), 7589Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Leichao Wu
    • 1
  • Yong Han
    • 1
    Email author
  • Qianrui Zhang
    • 1
  • Lin Zhu
    • 1
  • Chuanxin Zhang
    • 1
  • Ruikuan Zhao
    • 1
  1. 1.Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, School of Electrical EngineeringYanshan UniversityQinhuangdaoP. R. China

Personalised recommendations