Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 952–958 | Cite as

Graphene-Gold Nanoparticle-modified Electrochemical Sensor for Detection of Kanamycin Based on Target-induced Aptamer Displacement

  • Jingyi Zheng
  • Rongrong Feng
  • Caimei He
  • Xiaoxia LiEmail author


A highly sensitive and selective label-free electrochemical sensor was developed for the determination of kanamycin. To improve the sensitivity of the electrochemical sensor, graphene-gold nanoparticles were prepared by a one-step electrochemical coreduction process and were modified on the surface of a glassy carbon electrode. The double-stranded DNA(ds-DNA) duplex probe was immobilized onto the graphene-gold nanoparticle-modified electrode. The introduction of target kanamycin induced the displacement of aptamer from the ds-DNA duplex into the solution. Methylene blue(MB) as a redox indicator monitored the current change using differential pulse voltammetry. Under optimal conditions, the designed electrochemical aptasensor exhibited a wide linear range from 0.1 pmol/L to 10 pmol/L with a detection limit of 0.03 pmol/L for kanamycin. The experimental strategy enabled the direct analysis of milk samples, and the results showed high sensitivity and good selectivity.


Kanamycin Electrochemical aptasensor Graphene Gold nanoparticle Methylene blue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cleveland C. B., Francke D. E., Heller W. M., Kepler J. A., Provost G. P., Reilly M. J., AHFS Drug Information, American Society of Hospital Pharmacists Press, Bethesda, 1990, 51Google Scholar
  2. [2]
    Yow M. D., Tengg N. E., Bangs J., Bangs T., Stephenson W., J. Pediatr., 1962, 60, 230CrossRefGoogle Scholar
  3. [3]
    Mays D. L., van Apeldoorn R. J., Lauback R. G., J. Chromatogr. A, 1976, 120(1), 93CrossRefGoogle Scholar
  4. [4]
    Chen S. H., Liang Y. C., Chou Y. W., J. Sep. Sci., 2006, 29, 607CrossRefGoogle Scholar
  5. [5]
    Oertela R., Neumeisterb V., Kircha W., J. Chromatogr. A, 2004, 1058, 197CrossRefGoogle Scholar
  6. [6]
    Yu C. Z., He Y. Z., Fu G. N., Xie H. Y., Gan W. E., J. Chromatogr. B, 2009, 877, 333CrossRefGoogle Scholar
  7. [7]
    Chen Y. P., Zou M. Q., Qi C., Xie M. X., Wang D. N., Wang Y. F., Xue Q., Li J. F., Chen Y., Biosensors and Bioelectronics, 2013, 39, 112CrossRefGoogle Scholar
  8. [8]
    He J. X., Wang Y., Zhang X. Y., Food Anal. Methods, 2016, 9(3), 744CrossRefGoogle Scholar
  9. [9]
    Tuerk C., Gold L., Science, 1990, 249, 505CrossRefGoogle Scholar
  10. [10]
    Song K. M., Cho M., Jo H., Min K., Jeon S. H., Kim T., Han M. S., Ku J. K., Ban C., Anal. Biochem., 2011, 415(2), 175CrossRefGoogle Scholar
  11. [11]
    Xu Y. Y., Han T., Li X. Q., Sun L. H., Zhang Y. J., Zhang Y. S., Analytica Chimica Acta, 2015, 891, 298CrossRefGoogle Scholar
  12. [12]
    Ramezania M., Danesha N. M., Lavaeec P., Abnouse K., Taghdisif S. M., Sensors and Actuators B, 2016, 222, 1CrossRefGoogle Scholar
  13. [13]
    Liu Z. P., Tian C. S., Lu L. H., Su X. G., RSC Adv., 2016, 6, 10205CrossRefGoogle Scholar
  14. [14]
    Zhou N., Zhang J., Tian Y., Analytical Methods, 2014, 6(5),1569CrossRefGoogle Scholar
  15. [15]
    Leung K. H., He H. Z., Chan D. S. H., Fu W. C., Leung C. H., Ma D. L., Sensors and Actuators B: Chem., 2013, 177, 487CrossRefGoogle Scholar
  16. [16]
    Wang C. S., Liu C., Luo J. B., Tian Y. P., Zhou N. D., Analytica Chimica Acta, 2016, 892, 1Google Scholar
  17. [17]
    Zhu Y., Chandra P., Song K. M., Ban C., Shim Y. B., Biosensors and Bioelectronics, 2012, 36, 29CrossRefGoogle Scholar
  18. [18]
    Zhou N. D., Luo J., Zhang J., You Y. D., Tian Y. P., Anal. Methods, 2015, 7, 1991CrossRefGoogle Scholar
  19. [19]
    Guo W. J, Sun N., Qin X. L., Pei M. S., Wang L.Y., Biosensors and Bioelectronics, 2015, 74, 691CrossRefGoogle Scholar
  20. [20]
    Qin X. L., Guo W. J., Yu H. J., Zhao J., Pei M. S., Analytical Methods, 2015, 13(7), 5419CrossRefGoogle Scholar
  21. [21]
    Zhao M., Zhuo Y., Chai Y. Q., Yuan R., Biomaterials, 2015, 52, 476CrossRefGoogle Scholar
  22. [22]
    Sun X., Li F., Shen G., Huang J., Wang X., Analyst, 2014, 139(1), 299CrossRefGoogle Scholar
  23. [23]
    Palchetti I., Mascini M., Analytical and Bioanalytical Chemistry, 2012, 402, 3103CrossRefGoogle Scholar
  24. [24]
    Song H. Y., Kang T. F., Li N. N., Lu L. P., Cheng S. Y., Analytical Methods, 2016, 16(8), 3366CrossRefGoogle Scholar
  25. [25]
    Liu R., Yang Z. H., Guo Q., Zhao J. C., Ma J., Kang Q., Tang Y. F., Xue Y., Lou X. H., He M., Electrochim. Acta, 2015, 182, 516CrossRefGoogle Scholar
  26. [26]
    Zhan B. B., Li C., Yang J., Jenkins G., Huang W., Dong X. C., Small, 2014, 10, 4042CrossRefGoogle Scholar
  27. [27]
    Sun W., Wang D., Zhang Y. Y., Ju X. M., Yang H. X., Chen Y. X., Sun Z. F., Chinese J. Anal. Chem., 2013, 41(5), 709CrossRefGoogle Scholar
  28. [28]
    Liang J. F., Chen Z. B., Guo L., Li L. D., Chem. Commun, 2011, 47, 5476CrossRefGoogle Scholar
  29. [29]
    Cui F., Zhang X. L., J. Electroanal. Chem., 2012, 669, 35CrossRefGoogle Scholar
  30. [30]
    Zhou L., Wang J. P., Li D. J., Li Y. B., Food Chem., 2014, 162, 34CrossRefGoogle Scholar
  31. [31]
    Feng R. R., Hu X. Q., He C. M., Li X. X., Luo X. W., Anal. Lett., 2017, 50, 336CrossRefGoogle Scholar
  32. [32]
    Jiao X. X., Luo H. Q., Li N. B., J. Electroanal. Chem., 2013, 691, 83CrossRefGoogle Scholar
  33. [33]
    Liu C. B., Wang K., Luo S. L., Tang Y. H., Chen L. Y., Small, 2011, 7, 1203CrossRefGoogle Scholar
  34. [34]
    Lu Y., Li X. C., Zhang L. M., Yu P., Su L., Mao L. Q., Anal. Chem., 2008, 80, 1883CrossRefGoogle Scholar
  35. [35]
    Yang C., Wang Q., Xiang Y., Yuan R., Chai Y., Sensors and Actuators B: Chem., 2014, 197, 149CrossRefGoogle Scholar
  36. [36]
    Goncalves G., Marques P. A. A. P., Granadeiro C. M., Nogueira H. I. S., Singh M. K., Gráci J., Chem. Mater., 2009, 21, 4796CrossRefGoogle Scholar
  37. [37]
    Jena B. K., Percival S. J., Zhang B., Anal. Chem., 2010, 82, 6737CrossRefGoogle Scholar
  38. [38]
    Liu C. B., Wang K., Luo S. L., Tang Y. H., Chen L. Y., Small, 2011, 9, 1203CrossRefGoogle Scholar
  39. [39]
    Bai L. J., Yuan R., Chai Y. Q., Yuan Y. L., Wang Y., Xie S. B., Chem. Commun., 2012, 48, 10972CrossRefGoogle Scholar
  40. [40]
    Yang C., Wang Q., Xiang Y., Yuan R., Chai Y. Q., Sensors and Actuators B, 2014, 197, 149CrossRefGoogle Scholar
  41. [41]
    Erdem A., Kerman K., Meric B., Ozsoz M., Electroanal., 2001, 13, 219CrossRefGoogle Scholar
  42. [42]
    Feng K. J., Sun C. H., Kang Y., Chen J. W., Jiang J. H., Shen G. L., Yu R. Q., Electrochem. Commun., 2008, 10, 531CrossRefGoogle Scholar
  43. [43]
    Wei Q., Zhao Y. F., Du B., Wu D., Li H., Yang M. H., Food Chemistry, 2012, 134(3), 1601CrossRefGoogle Scholar
  44. [44]
    Wang C. K., Chen D., Wang Q. Q., Tan R., Biosensors and Bioelectronics, 2017, 91, 262CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jingyi Zheng
    • 1
  • Rongrong Feng
    • 1
  • Caimei He
    • 1
  • Xiaoxia Li
    • 1
    Email author
  1. 1.School of Chemistry and Chemical EngineeringYan’an UniversityYan’anP. R. China

Personalised recommendations