Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 899–904 | Cite as

Quantitative Determination of Urine Glucose: Combination of Laminar Flow in Microfluidic Chip with SERS Probe Technique

  • Dan Sun
  • Xiangyuan Liu
  • Shuping Xu
  • Yu Tian
  • Weiqing Xu
  • Yanchun TaoEmail author


A surface-enhanced Raman scattering(SERS) sensing approach for urine glucose was developed based on the laminar flow technology in a cross-type microfluidic chip with SERS probes, 4-mercaptophenylboronic acid (MPBA) functionalized Ag nanoparticles. MPBA as the glucose receptor can identify and bind up with glucose at a molar ratio of 2:1, which can cause the aggregation of SERS probes at a certain position of the chip channel and further enhance the SERS signal of MPBA significantly. Thus, the quantitative SERS detection of glucose was achieved indirectly. No sample pretreatment and separation were needed in this method since the SERS detection was achieved in the gradient diffusion and molecular recognition processes between urine glucose and SERS probe in the laminar flow, which simplified the sample treatment procedures, saved detection time and made it feasible for clinic applications. This method shows a good linear relationship within human body’s normal physiological range and has high sensitivity and selectivity. The lowest detection concentration can reach 1.0 mg/dL.


Surface-enhanced Raman scattering(SERS) Microfluidic chip 4-Mercaptophenylboronic acid Uurine glucose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lin B. C., Micro/Nano Fluidic Chip Laboratory, Science Press, Beijing, 2013, 1Google Scholar
  2. [2]
    Myers F. B., Lee L. P., Lab Chip, 2008, 8, 2015CrossRefGoogle Scholar
  3. [3]
    Liu G. L., Lee L. P., Appl. Phys. Lett., 2005, 87, 074101CrossRefGoogle Scholar
  4. [4]
    Tong L. M., Righini M., Gonzalez M. U., Quidant R., Käll M., Lab Chip, 2009, 9, 193CrossRefGoogle Scholar
  5. [5]
    Chen L. X., Choo J. B., Electrophoresis, 2008, 29, 1815CrossRefGoogle Scholar
  6. [6]
    Han K. N., Li C. A., Seong G. H., Ann. Rev. Anal. Chem., 2013, 6, 119CrossRefGoogle Scholar
  7. [7]
    Yi Y. H., Deng J. H., Zhang Y. Y., Lia H. T., Yao S. Z., Chem. Com-mun., 2013, 49, 612CrossRefGoogle Scholar
  8. [8]
    Hu A. L., Liu Y. H., Deng H. H., Hong G. L., Liu A. L., Lin X. H., Xia X. H., Chen W., Biosens. Bioelectron., 2014, 61, 374CrossRefGoogle Scholar
  9. [9]
    Kang F., Hou X., Xu K., Nanotechnology, 2015, 26, 405707CrossRefGoogle Scholar
  10. [10]
    Radhakumary C., Sreenivasan K., Anal. Chem., 2011, 83, 2829CrossRefGoogle Scholar
  11. [11]
    Yang X. J., Yu Y. B., Gao Z. Q., ACS Nano, 2014, 8, 4902CrossRefGoogle Scholar
  12. [12]
    He H. L., Xu X. L., Wu H. X., Jin Y. D., Adv. Mater., 2012, 24, 1736CrossRefGoogle Scholar
  13. [13]
    Lee S., Ringstrand B. S., Stone D. A., Firestone M. A., ACS Appl. Mater. Interfaces, 2012, 4, 2311CrossRefGoogle Scholar
  14. [14]
    Bandodkar A. J., Jia W. Z., Yardimci C., Wang X., Ramirez J., Wang J., Anal Chem., 2015, 87, 394CrossRefGoogle Scholar
  15. [15]
    Qi G. H., Jia K. Q., Fu C. C., Xu S. P., Xu W. Q., J. Opt., 2015, 17, 114020CrossRefGoogle Scholar
  16. [16]
    Qi G. H., Wang Y., Zhang B. Y., Sun D., Fu C. C., Xu W. Q., Xu S. P., Anal. Bioanal. Chem., 2016, 408, 7513CrossRefGoogle Scholar
  17. [17]
    Otsuka H., Uchimura E., Koshino H., Okano T., Kataoka K., J. Am. Chem. Soc., 2003, 125, 3493CrossRefGoogle Scholar
  18. [18]
    Andreyev E. A., Komkova M. A., Nikitina V. N., Zaryanov N. V., Voronin O. G., Karyakina E. E., Yatsimirsky A. K., Karyakin A. A., Anal. Chem., 2014, 86, 11690CrossRefGoogle Scholar
  19. [19]
    Baker G. A., Desikan R., Thundat T., Anal. Chem., 2008, 80, 4860CrossRefGoogle Scholar
  20. [20]
    Liu S. F., Du Z. F., Li P., Li F., Biosens. Bioelectron., 2012, 35, 443CrossRefGoogle Scholar
  21. [21]
    Sharma B., Bugga P., Madison L. R., Henry A. I., Blaber M. G., Greeneltch N. G., Chiang N., Mrksich M., Schatz G. C., van Duyne R. P., J. Am. Chem. Soc., 2016, 138, 13952CrossRefGoogle Scholar
  22. [22]
    Kong K. V., Ho C. J. H., Gong T. X., Lau W. K. O., Olivo M., Bio-sens. Bioelectron., 2014, 56, 186CrossRefGoogle Scholar
  23. [23]
    Usta D. D., Salimi K., Pinar A., Coban I., Tekinay T., Tuncel A., ACS Appl. Mater. Interfaces, 2016, 8, 11934CrossRefGoogle Scholar
  24. [24]
    Song W. Y., Ding L., Chen Y. L., Ju H. X., Chem. Commun., 2016, 52, 10640CrossRefGoogle Scholar
  25. [25]
    Liang L. J., Qu H. X., Zhang B. Y., Zhang J., Deng R., Shen Y. T., Xu S. P., Liang C. Y., Xu W. Q., Biosens. Bioelectron., 2017, 94, 148CrossRefGoogle Scholar
  26. [26]
    Sun D., Qi G. H., Xu S. P., Xu W. Q., RSC Adv., 2016, 6, 53800CrossRefGoogle Scholar
  27. [27]
    Lee P. C., Meisel D., J. Chem. Phys., 1982, 86, 3391CrossRefGoogle Scholar
  28. [28]
    Li S., Zhou Q., Chu W., Zhao W., Zheng J., Phys. Chem. Chem. Phys., 2015, 17, 17638CrossRefGoogle Scholar
  29. [29]
    Ding S. Y., Yi J., Li J F., Nature Reviews Materials, 2016, 1, 16021CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dan Sun
    • 1
  • Xiangyuan Liu
    • 1
  • Shuping Xu
    • 1
  • Yu Tian
    • 1
  • Weiqing Xu
    • 1
  • Yanchun Tao
    • 1
    Email author
  1. 1.Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical ChemistryJilin UniversityChangchunP. R. China

Personalised recommendations