Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 1035–1040 | Cite as

Porous Organic Polymer Nanoparticles for Sensing of Unsaturated Hydrocarbons

  • Zhi Liu
  • Feifan Xu
  • Zhijie Zhao
  • Yuhua He
  • Hongxing Zhang
  • Guangtian Zou
  • Yangxue LiEmail author
Article
  • 19 Downloads

Abstract

The design and synthesis of porous organic polymers for the potential application in chemical sensors re-mains a huge challenge nowadays. Herein, a porous organic polymer possessing tetrazole groups(TTZ-3) was synthe-sized via simple Schiff base chemical reaction. Thermogravimetric analysis(TGA), Fourier transform infrared spec-trometer(FTIR), solid-state 13C cross polarization/magic angle spinning nuclear magnetic resonance(CP/MAS NMR), transmission electron microscopies(TEM) and field-scanning electron microscopies(FE-SEM) were adopted to characterize the structure and morphology in detail. Significantly, the formed polymers exhibited special detection of unsaturated hydrocarbons through fluorescence enhancement based on photoactivatable 1,3-dipolar cycloaddition reactions. Furthermore, the reaction activity of different unsaturated hydrocarbons towards the polymers was investigated. This work highlights the great potential of porous organic polymers as chemical sensors in realizing environmental pollution monitoring and reducing the incidence of disease, such as chronic obstructive pulmonary disease.

Keywords

Chronic obstructive pulmonary disease Porous organic polymer 1,3-Dipolar cycloaddition Air pollution Unsaturated hydrocarbons detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_8161_MOESM1_ESM.pdf (122 kb)
Covalent Organic Polymer Nanoparticles for Sensing of Unsaturated Hydrocarbons

References

  1. [1]
    Lopez A. D., Shibuya K., Rao C., Mathers C. D., Hansell A. L., Held L. S., Schmid V., Buist S., Eur. Respir. J., 2006, 27, 397CrossRefGoogle Scholar
  2. [2]
    Saltveit M. E., Postharvest Biol. Technol., 1999, 15, 279CrossRefGoogle Scholar
  3. [3]
    Kader A. A., Hort Science, 2003, 38, 1004Google Scholar
  4. [4]
    Deng H. X., Grunder S., Cordova K. E., Valente C., Furukawa H., Hmadeh M., Gandara F., Whalley A. C., Liu Z., Asahina S., Kazu-mori H., O’Keeffe M., Terasaki O., Stoddart J. F., Yaghi O. M., Science, 2012, 336, 1018CrossRefGoogle Scholar
  5. [5]
    Xiang S. C., He Y. B., Zhang Z. J., Wu H., Zhou W., Krishna R., Chen B. L., Nat. Commun., 2012, 3, 954CrossRefGoogle Scholar
  6. [6]
    Zhou H. C., Long J. R., Yaghi O. M., Chem. Rev., 2012, 112, 673CrossRefGoogle Scholar
  7. [7]
    Shan L., Wang L., Fan Y., Shen L. L., Wang S. Y., Xu J. N., Chem. Res. Chinese Universities, 2017, 33(3), 479CrossRefGoogle Scholar
  8. [8]
    Zhao W. X., Hou Z. S., Yao Z. Q., Zhuang X. D., Zhang F., Feng X. L., Polym. Chem., 2015, 6, 7171CrossRefGoogle Scholar
  9. [9]
    Meng X. B., Gao Q. M., Chem. J. Chinese Universities, 2014, 35(8), 1715Google Scholar
  10. [10]
    Liu L. L., Tai X. S., Yu G. L., Guo H. M., Meng Q. G., Chem. Res. Chinese Universities, 2016, 32(3), 443CrossRefGoogle Scholar
  11. [11]
    Liu J., Chen Q., Sun Y. N., Xu M. Y., Liu W., Han B. H., RSC Adv., 2016, 6, 48543CrossRefGoogle Scholar
  12. [12]
    Yuan Y. C., Sun B., Cao A. M., Wang D., Wan L. J., Chem. Commun., 2018, 54, 5976CrossRefGoogle Scholar
  13. [13]
    Chen L., Furukawa K., Gao J., Nagai A., Nakamura T., Dong Y., Jiang D., J. Am. Chem. Soc., 2014, 136, 9806CrossRefGoogle Scholar
  14. [14]
    Sun Q., Aguila B., Ma S. Q., Mater. Chem. Front., 2017, 1, 1310CrossRefGoogle Scholar
  15. [15]
    Lu W. J., Huang S. Z., Miao L., Liu M. X., Zhu D. Z., Li L. C., Duan H., Xua Z. J., Gan L. H., Chin. Chem. Lett., 2017, 28, 1324CrossRefGoogle Scholar
  16. [16]
    Miao L., Zhu D. Z., Zhao Y. H., Liu M. X., Duan H., Xiong W., Zhu Q. J., Li L. C., Lv Y. K., Gan L. H., Micropor. Mesopor., Mat., 2017, 253, 1CrossRefGoogle Scholar
  17. [17]
    Liu M. X., Qian J. S., Zhao Y. H., Zhu D. Z., Gan L. H., Chen L. W., J. Mater. Chem. A, 2015, 3, 11517CrossRefGoogle Scholar
  18. [18]
    Uribe-Romo F. J., Hunt J. R., Furukawa H., Klock C., O’Keeffe M., Yaghi O.M, J. Am. Chem. Soc. 2009, 131, 4570CrossRefGoogle Scholar
  19. [19]
    Das S., Heasman P., Ben T., Qiu S. L., Chem. Rev., 2017, 117, 1515CrossRefGoogle Scholar
  20. [20]
    Segura J. L., Mancheňoa M. J., Zamora F., Chem. Soc. Rev., 2016, 45, 5635CrossRefGoogle Scholar
  21. [21]
    Uribe-Romo F. J., Doonan C. J., Furukawa H., Oisaki K., Yaghi O. M., J. Am. Chem. Soc., 2011, 133, 11478CrossRefGoogle Scholar
  22. [22]
    Butler R. N., Katritzky A. R., Rees C. W., Scriven E. F. V., Compre-hensive Heterocyclic Chemistry, Pergammon, Oxford, 1996Google Scholar
  23. [23]
    Bond A. D., Fleming A., Kelleher F., McGinley J., Prajapati V., Tet-rahedron, 2006, 62, 9577CrossRefGoogle Scholar
  24. [24]
    Herr R. J., Bioorg. Med. Chem., 2002, 10, 3379CrossRefGoogle Scholar
  25. [25]
    Wang Y., Song W., Hu W. J., Lin Q., Angew. Chem. Int. Ed., 2009, 48, 5330CrossRefGoogle Scholar
  26. [26]
    Wang Y., Hu W. J., Song W., Lim R. K. V., Lin Q., Org. Lett., 2008, 10, 3725CrossRefGoogle Scholar
  27. [27]
    Hiskey M., Chavez D. E., Naud D. L., Son S. F., Berghout H. L., Bome C. A., Proc. Int. Pyrotech. Semin., 2000, 27, 3Google Scholar
  28. [28]
    Gundugola A. S., Chandra K. L., Perchellet E. M., Waters A. M., Perchellet J. P. H., Rayat S., Bioorg. Med. Chem. Lett., 2010, 20, 3920CrossRefGoogle Scholar
  29. [29]
    Srihari P., Dutta P., Rao R. S., Yadav J. S., Chandrasekhar S., Thom-bare P., Mohapatra J., Chatterjee A., Jain M. R., Bioorg. Med. Chem. Lett., 2009, 19, 5569CrossRefGoogle Scholar
  30. [30]
    Li Y., Sun Z., Sun T., Chen L., Xie Z., Huang Y., Jing X., RSC Adv., 2013, 3, 21302CrossRefGoogle Scholar
  31. [31]
    Laliberté D., Maris T., Wuest J. D., J. Org. Chem., 2004, 69, 1776CrossRefGoogle Scholar
  32. [32]
    Li Y., Gao L. X., Han F. S., Chem. Commun., 2012, 48, 2719CrossRefGoogle Scholar
  33. [33]
    Nguyen V., Grunwald M., J. Am. Chem. Soc., 2018, 140, 3306CrossRefGoogle Scholar
  34. [34]
    Cui Y. Z., Du J. F., Liu Y. C., Yu Y., Wang S., Pang H., Liang Z. Q., Yu J. H., Polym. Chem., 2018, 9, 2643CrossRefGoogle Scholar
  35. [35]
    Song W., Wang Y., Qu J., Madden M. M., Lin Q., Angew. Chem. Int. Ed., 2008, 47, 2832CrossRefGoogle Scholar
  36. [36]
    Song W., Wang Y., Qu J., Lin Q., J. Am. Chem. Soc., 2008, 130, 9654CrossRefGoogle Scholar
  37. [37]
    Zheng S. L., Wang Y., Yu Z., Lin Q., Coppens P., J. Am. Chem. Soc., 2009, 131, 18036CrossRefGoogle Scholar
  38. [38]
    Tasdelen M. A., Yagci Y., Angew. Chem. Int. Ed., 2013, 52, 5930CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhi Liu
    • 2
  • Feifan Xu
    • 1
  • Zhijie Zhao
    • 1
  • Yuhua He
    • 3
  • Hongxing Zhang
    • 3
  • Guangtian Zou
    • 2
  • Yangxue Li
    • 1
    Email author
  1. 1.Key Lab of Groundwater Resources and Environment, Ministry of EducationJilin UniversityChangchunP. R. China
  2. 2.State Key Laboratory of Superhard MaterialsJilin UniversityChangchunP. R. China
  3. 3.International Joint Research Laboratory of Nano-micro Architecture, Institute of Theoretical ChemistryJilin UniversityChangchunP. R. China

Personalised recommendations