Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 877–881 | Cite as

Acylation of Anisole Catalyzed by Hierarchical Porous Hβ Zeolite Modified with Cr

  • Guohua Li
  • Huipeng LiEmail author
  • Hua Zhao
  • Tianfeng Cai
  • Yange Li
  • Shengnan Guan
Article
  • 13 Downloads

Abstract

Modified hierarchical porous Hβ zeolite was obtained by metal modification of Hβ zeolite, which was treated with alkaline solution, and the catalysts before and after modification were characterized by means of X-ray diffraction(XRD), nitrogen adsorption-desorption, scanning electron microscopy(SEM), X-ray fluorescence(XRF), NH3 temperature-programmed desorption and Fourier-transform infrared spectroscopy(FTIR). The activities of acylation of anisole with acetic anhydride were also investigated. The results show that the Hβ zeolite, which was treated with alkaline solution has microporous and mesoporous structures that could improve the diffusion performance of chemical reaction. The amount of acid was modulated with metal modification. The Hβ zeolite modified by 5%(mass fraction) metal chromium had the best catalytic performance. The conversion of acetic anhydride acylation was 93.01% under the optimal conditions, which was higher than that of other catalysts. The catalyst not only showed good activity, but also exhibited a stable performance in regeneration tests.

Keywords

Hierarchical porous Hβ zeolite Anisole Acetic anhydride Acylation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Duong N., Wang B., Sooknoi T., Crossley S., Resasco P., Chemsuschem, 2017, 10(13), 2823CrossRefGoogle Scholar
  2. [2]
    Freese U., Heinrich F., Roessner F., Catalysis Today, 1999, 49(1–3), 237CrossRefGoogle Scholar
  3. [3]
    Mu M. M., Chen L. G., Wang S. T., J. Porous Mater, 2015, 22(5), 1137CrossRefGoogle Scholar
  4. [4]
    Chen P., Gao X. H., Zhuo Y. C., Journal of Molecular Science, 2012, 28(2), 142Google Scholar
  5. [5]
    Koohsaryan E., Anbia M., Chinese Journal of Catalysis, 2016, 37(4), 447CrossRefGoogle Scholar
  6. [6]
    Silaghi M. C., Chizallet C., Sauer J., Raybaud P., Journal of Catalysis, 2016, 339(1), 242CrossRefGoogle Scholar
  7. [7]
    Zhang Y., Lu P., Yuan Y., Xu L., Guo H., Zhang X., Xu L., Crystengcomm, 2017, 19(32), 4713CrossRefGoogle Scholar
  8. [8]
    Han S., Wang Z., Meng L., Jiang N., Materials Chemistry & Physics, 2016, 177(1), 112CrossRefGoogle Scholar
  9. [9]
    Rani P., Srivastava R., Satpati B., Crystal Growth & Design, 2016, 16(6), 3323CrossRefGoogle Scholar
  10. [10]
    Valtchev V., Mintova S., MRS Bulletin, 2016, 41(9), 689CrossRefGoogle Scholar
  11. [11]
    Koohsaryan E., Anbia M., Chinese Journal of Catalysis, 2016, 37(4), 447CrossRefGoogle Scholar
  12. [12]
    Guo Y., Zhang Y., Zhao Z., Chinese Journal of Catalysis, 2018, 39(1), 181CrossRefGoogle Scholar
  13. [13]
    Bernales V., Yang D., Yu J., Gümüslü G., Cramer J., Gates C., Gagliardi L., ACS Applied Materials & Interfaces, 2017, 9(39), 33511CrossRefGoogle Scholar
  14. [14]
    Lin L., Lin Y., Li C., Wu D., Kong H., International Journal of Mineral Processing, 2016, 148(1), 32CrossRefGoogle Scholar
  15. [15]
    Ruan W., Xie A. D., Yu X. G., Wu D. L., Acta Physica Sinica, 2012, 61(4), 043102Google Scholar
  16. [16]
    Li J., Li L. S., Xu L., Materials Letters, 2017, 193(1), 67CrossRefGoogle Scholar
  17. [17]
    Rawat M., Das A., Shukla D. K., Rajput P., Chettah A, Phase D. M., Ramola R. C., Singh F., RSC Advances, 2016, 6(106), 104425CrossRefGoogle Scholar
  18. [18]
    Otto T., Zones S. I., Hong Y., Iglesia E., Journal of Catalysis, 2017, 356, 173CrossRefGoogle Scholar
  19. [19]
    Pang M. F., Georgoudaki A. M., Lambut L., Johansson J., Tabor V., Hagikura K., Jin Y., Jansson M., Alexander J. S., Nelson C. M., Jakobsson L., Betsholtz C., Sund M., Karlsson M. I. C., Fuxe J., Oncogene, 2016, 35(6), 748CrossRefGoogle Scholar
  20. [20]
    Wang Y., Song H., Sun X., Chinese Journal of Catalysis, 2016, 37(12), 2134CrossRefGoogle Scholar
  21. [21]
    Zhang Q., Ming W., Ma J., Zhang J., Wang P., Li R., Journal of Materials Chemistry A, 2014, 2(23), 8712CrossRefGoogle Scholar
  22. [22]
    Gao D., Duan A., Zhang X., Xu C., Journal of Materials Chemistry A, 2015, 3(32), 16501CrossRefGoogle Scholar
  23. [23]
    Zhang W., Hou W., Meng T., Zhuang W., Xie J., Zhou Y., Wang J., Catalysis Science & Technology, 2017, 7(24), 6050CrossRefGoogle Scholar
  24. [24]
    Tang Z., Xu W., Li A., Ren M., Carbon, 2016, 100(1), 711CrossRefGoogle Scholar
  25. [25]
    Yu S., Bo J., Wu L., Physical Chemistry Chemical Physics, 2017, 19(27), 17773CrossRefGoogle Scholar
  26. [26]
    Chen P., Zhai Y. C., Chinese Journal of Process Engineering, 2010, 10(1), 70Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guohua Li
    • 1
  • Huipeng Li
    • 1
    Email author
  • Hua Zhao
    • 1
  • Tianfeng Cai
    • 1
  • Yange Li
    • 1
  • Shengnan Guan
    • 1
  1. 1.College of Chemistry, Chemical Engineering and Environmental EngineeringLiaoning Shihua UniversityFushunP. R. China

Personalised recommendations