Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 912–917 | Cite as

Synthesis, Biological Evaluation and Molecular Docking of Novel Phenylpyrimidine Derivatives as Potential Anticancer Agents

  • Bo Jin
  • Ye Tao
  • Hongliang YangEmail author


Based on our previous researches, a novel phenylpyrimidine pharmacophore model was proposed and fifteen derivatives were synthesized and characterized by means of spectroscopy methods. The inhibitory effects of them were screened against HeLa cell line by virtue of MTT assay in vitro. The results indicate some of the phenyl-pyrimidine derivatives exhibit potent biological activities. Among them, compounds 6g and 6h exhibit the best activity at half maximal inhibitory concentrations of 1.5 and 2.8 μmol/L, respectively. These compounds also exhibit good activities against HepG2 cell line and MCF-7 cell line. FLT-3 kinase was screened as the most potent molecular target. Computational docking between compound 6g and FLT-3 was carried out to interpret the binding mode. The results show phenylpyrimidine derivatives have effective antitumor activities, which provides a base for further research of them as antitumor agents.


Phenylpyrimidine Anticancer activity Molecular docking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Siegel R. L., Miller K. D., Jemal A., Cancer statistics, 2016, 66(1), 7Google Scholar
  2. [2]
    Vineis P., Christopher P. W., Lancet, 2014, 383(9916), 549CrossRefGoogle Scholar
  3. [3]
    Creixell M., Peppa N. A., Nano Today, 2012, 7(4), 367CrossRefGoogle Scholar
  4. [4]
    Takara K., Sakaeda T., Okumura K., Curr. Pharm. Design, 2006, 12(3), 273CrossRefGoogle Scholar
  5. [5]
    Raez L. E., Lilenbaum R., Clin. Adv. Hemato. Oncol., 2004, 2(3), 173Google Scholar
  6. [6]
    Santin M. T., Rainaldi G., Indovina P. L., Crit. Rev. Oncol. Hemat., 2000, 36(2), 75CrossRefGoogle Scholar
  7. [7]
    Marsoni S., Damia G., Ann. Oncol., 2004, 15, 229CrossRefGoogle Scholar
  8. [8]
    Cummings J., Ward T. H., Ranson M., Dive C., Biochimica et Biophysica Acta—Rev. Cancer, 2004, 1705(1), 53CrossRefGoogle Scholar
  9. [9]
    Xie H. Z., Li L. L., Ren J. X., Zou J., Yang L., Wei Y. Q., Yang S. Y., Bioorg. Med. Chem. L., 2009, 19(7), 1944CrossRefGoogle Scholar
  10. [10]
    Hsu Y. C., Weng H. C., Lin S. R., Chien Y. W., J. Agr. Food Chem., 2007, 55(20), 8213CrossRefGoogle Scholar
  11. [11]
    Wang L., Zheng G. J., Ji Q., Chen B., Gong L. L., Gao C. M., Du Z. J., Zhang X. M., Chem. J. Chinese Universities, 2017, 38(9), 1590Google Scholar
  12. [12]
    Bai X. F., Ma X., Xie X. X., Shao M. S., Guo N. N., Yan N., Yao L., Chem. J. Chinese Universities, 2017, 38(1), 47Google Scholar
  13. [13]
    Yang H. L., Xu G. X., Pei Y. Z., Chem. Res. Chin. Universities, 2017, 33(1), 61CrossRefGoogle Scholar
  14. [14]
    Yang H. L., Xu G. X., Bao M. Y., Zhang D. P., Li Z. W., Pei Y. Z., Chem. J. Chinese Universities, 2015, 35(12), 2584Google Scholar
  15. [15]
    Zorn J. A., Wang Q., Fujimura E., Barros T., Kuriyan J., PLoS One, 2015, 10(4), e0121177CrossRefGoogle Scholar
  16. [16]
    Hussain M., Hung N. T., Khera R. A., Malik I., Zinad D. S., Langer P., Adv. Synth. Catal., 2010, 352(9), 1429CrossRefGoogle Scholar
  17. [17]
    Liu J., Fitzgerald A. E., Mani N. S., J. Org. Chem., 2008, 73(7), 2951CrossRefGoogle Scholar
  18. [18]
    Anderson S. C, Handy S. T., Synthesis., 2010, 16, 2721Google Scholar
  19. [19]
    Zhu L., Duquette J., Zhang M., J. Org. Chem., 2003, 68(9), 3729CrossRefGoogle Scholar
  20. [20]
    Zhang Y., Gao J., Li W., Lee H., Lu B. Z., Senanayake C. H., J. Org. Chem., 2011, 76(15), 6394CrossRefGoogle Scholar
  21. [21]
    Gerebtzoff G., Li-Blatte X., Fischer H., Frentzel A., Seelig A., Chem. Bio. Chem., 2004, 5(5), 676CrossRefGoogle Scholar
  22. [22]
    Gentry C. L., Egleton R. D., Gillespie T., Abbruscato T. J., Bechows-ki H. B., Hruby V. J., Davis T. P., Peptides, 1999, 20(10), 1229CrossRefGoogle Scholar
  23. [23]
    Metrangolo P., Neukirch H., Pilati T., Resnati G., Acc. Chem. Res., 2005, 38(5), 386CrossRefGoogle Scholar
  24. [24]
    Metrangolo P., Resnati G., Chem. Eur. J., 2001, 7(12), 2511CrossRefGoogle Scholar
  25. [25]
    Auffinger P., Hays F. A., Westhof E., Ho P. S., Proc. Natl. Acad. Sci. USA, 2004, 101(48), 16789CrossRefGoogle Scholar
  26. [26]
    Rogez-Florent T., Meignan S., Foulon C., Six P., Gros A., Bal-Mahieu C., Supuran C. T., Scozzafava A., Frédérick R., Masereel B., Depreux P., Lansiaux A., Goossens J. F., Gluszok S., Goossens L., Bioorg. Med. Chem., 2013, 21(6), 1451CrossRefGoogle Scholar
  27. [27]
    Hartshorn M. J., Murray C. W., Cleasby A., Frederickson M., Tickle I. J., Jhoti H., J. Med. Chem., 2005, 48(2), 403CrossRefGoogle Scholar
  28. [28]
    Badrinarayan P., Sastry G. N., J. Chem. Inf. Model., 2011, 51(1), 115CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Veterinary MedicineNortheast Agricultural UniversityHarbinP. R. China
  2. 2.Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentHarbinP. R. China
  3. 3.School of Pharmaceutical SciencesJilin UniversityChangchunP. R. China

Personalised recommendations