Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 1041–1050 | Cite as

pH-Responsive Polycarbonate Copolymer-based Nanoparticles for Targeted Anticancer Drug Delivery

  • Yunxia Li
  • Wenjuan Du
  • Zhiguang Fu
  • Huanhuan Wang
  • Jiexin Wang
  • Yuan Le
  • Jianjun Zhang
  • Ning Wen


A smart polycarbonate(PCA) copolymer-based nanoparticle(NanoPCA) with pH-responsive, long-term stability, and tumor targeting ability was successfully developed by synthesizing and assembling a series of functional PCA-based copolymers including poly(2-amino-1,3-propanediol carbonate-co-L-lactide)[P(CA-co-LA)], poly(2-amino-1,3-propanediol carbonate-co-L-lactide)-g-methoxy-poly(ethylene glycol)[P(CA-co-LA)-g-MPEG], and poly(2-amino-1,3-propanediol carbonate-co-L-lactide)-g-poly(ethylene glycol)-cyclic(Arg-Gly-Asp-D-Phe-Lys) [P(CA-co-LA)-g-PEG-cRGD] for targeted anticancer drug delivery. pH-Responsive studies demonstrated that the loading doxorubicin(DOX) released faster from NanoPCA at acidic conditions due to protonation effects of P(CA-co-LA) copolymers. Furthermore, the in vitro and in vivo investigations demonstrate that the DOX-loaded NanoPCA exhibited significant tumor targeting ability, outstanding antitumor effect and excellent biological safety in the treatment of oral squamous cell carcinoma(OSCC). Therefore, this work provides a promising drug delivery platform for cancer therapy and other applications.


Polycarbonate copolymer-based nanoparticle(NanoPCA) pH-Responsive Tumor targeting ability Oral squamous cell carcinoma(OSCC) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Peer D., Karp J. M., Hong S., Farokhzad O. C., Margalit R., Langer R., Nature Nanotechnolpgy, 2007, 2(12), 751CrossRefGoogle Scholar
  2. [2]
    Danhier F., Feron O., Preat V., Journal of Controlled Release, 2010, 148(2), 135CrossRefGoogle Scholar
  3. [3]
    Sun Q., Radosz M., Shen Y., Journal of Controlled Release, 2012, 164(2), 156CrossRefGoogle Scholar
  4. [4]
    Bae Y., Kataoka K., Advanced Drug Delivery Reviews, 2009, 61(10), 768CrossRefGoogle Scholar
  5. [5]
    Cui C., Xue Y. N., Wu M., Zhang Y., Yu P., Liu L., Zhuo R. X., Huang S. W., Biomaterials, 2013, 34(15), 3858CrossRefGoogle Scholar
  6. [6]
    Chen J., Qiu X., Ouyang J., Kong J., Zhong W., Xing M. M., Bioma-cromolecules, 2011, 12(10), 3601CrossRefGoogle Scholar
  7. [7]
    Huang C. K., Lo C. L., Chen H. H., Hsiue G. H., Advanced Func-tional Materials, 2007, 17(14), 2297Google Scholar
  8. [8]
    Rong T., David A. C., Li T., Horacio C., James R. B., Kazunori K., Dennis E. D., Chang J. J., MRS Bulletin, 2011, 34(6), 422Google Scholar
  9. [9]
    Ryu J. H., Chacko R. T., Jiwpanich S., Bickerton S., Babu R. P., Thayumanavan S., Journal of the American Chemical Society, 2010, 132(48), 17227CrossRefGoogle Scholar
  10. [10]
    Oishi M., Hayashi H., Uno T., Iijima M., Nagasaki N., Macromole-cular Chemistry and Physics, 2007, 208(11), 1176CrossRefGoogle Scholar
  11. [11]
    Cheng R., Meng F., Deng C., Klok H. A., Zhong Z., Biomaterials, 2013, 34(14), 3647CrossRefGoogle Scholar
  12. [12]
    Sant S., Nadeau V., Hildgen P., Journal of Controlled Release, 2005, 107(2), 203CrossRefGoogle Scholar
  13. [13]
    Yoon H. Y., Koo H., Choi K. Y., Kim K., Kwon I. C., Leary J. F., Park K., Yuk S. H., Park J. H., Choi K., Biomaterials, 2012, 33(15), 3980CrossRefGoogle Scholar
  14. [14]
    Jing L., Liang X., Li X., Yang Y., Dat Z., Acta Biomaterialia, 2013, 9(12), 9434CrossRefGoogle Scholar
  15. [15]
    Kumari A., Yadav S. K., Yadav S. C., Colloids and Surfaces B: Bio-interfaces, 2010, 75(1), 1CrossRefGoogle Scholar
  16. [16]
    Xu P., Gullotti E., Tong L., Highley C. B., Errabelli D. R., Hasan T., Cheng J. X., Kohane D. S., Yeo Y., Molecular Pharmaceutics, 2009, 6(1), 190CrossRefGoogle Scholar
  17. [17]
    Deng C., Jiang Y. J., Cheng R., Meng F. H., Zhong Z. Y., Nano. To-day, 2012, 7, 467CrossRefGoogle Scholar
  18. [18]
    Meng F. H., Cheng R., Chao D., Zhong Z. Y., Materials Today, 2012, 15(10), 7CrossRefGoogle Scholar
  19. [19]
    Kurtoglu Y. E., Navath R. S., Wang B., Kannan S., Romero R., Kan-nan R. M., Biomaterials, 2009, 30(11), 2112Google Scholar
  20. [20]
    Wang H. X., Yang X. Z., Sun C. Y., Mao C. Q., Zhu Y. H., Wang J., Biomaterials, 2014, 35(26), 7622Google Scholar
  21. [21]
    Ma N., Li Y., Xu H., Wang Z., Zhang X., Journal of the American Chemical Society, 2010, 132(2), 442CrossRefGoogle Scholar
  22. [22]
    Xu P., van Kirk E. A., Zhan Y., Murdoch W. J., Radosz M., Shen Y., Angewandte Chemie International Edition, 2007, 46(26), 4999CrossRefGoogle Scholar
  23. [23]
    Tian Y. F., Zheng J., Tang X. L., Ren Q. G., Wang Y. J., Yang W. L., Particle & Particle Systems Characterization, 2015, 32(5), 547CrossRefGoogle Scholar
  24. [24]
    Mura S., Nicolas J., Couvreur P., Nature Materials, 2013, 12(11), 991CrossRefGoogle Scholar
  25. [25]
    Li M., Gao Y., Yuan Y., Wu Y., Song Z., Tang B. Z., Liu B., Zheng Q. C., ACS Nano, 2017, 11(4), 3922CrossRefGoogle Scholar
  26. [26]
    Hu X. L., Chen X. S., Xie Z. G., Cheng H. B., Jing X. B., Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(21), 7022CrossRefGoogle Scholar
  27. [27]
    Zheng M., Yue C., Ma Y., Gong P., Zhao P. F., Zheng C. F., Sheng Z. H., Zhang P. F., Wang Z. H., Cai L., ACS Nano, 2013, 7(3), 2056CrossRefGoogle Scholar
  28. [28]
    Zhang L., Gao S., Zhang F., Yang K., Ma Q., Zhu L., ACS Nano, 2014, 8(12), 12250CrossRefGoogle Scholar
  29. [29]
    Zhan C., Gu B., Xie C., Li J., Liu Y., Lu W., Journal of Controlled Release, 2010, 143(1), 136CrossRefGoogle Scholar
  30. [30]
    Liang K., Richardson J. J., Ejima H., Such G. K., Cui J., Caruso F., Advanced Materials, 2014, 26(15), 2398CrossRefGoogle Scholar
  31. [31]
    Yang L. H., Xu B. H., Liao M. Y., Zhou J. Y., Nano Drug Safety, Science Press, Beijing. 2010, 96Google Scholar
  32. [32]
    Millard M., Yakavets I., Zorin V., Kulmukhamedova A., Marchal S., Bezdetnaya L., International Journal of Nanomedicine, 2017, 12, 7993CrossRefGoogle Scholar
  33. [33]
    Torchilin V., Advanced Drug Delivery Reviews, 2011, 63(3), 131CrossRefGoogle Scholar
  34. [34]
    Devalapally H., Rajan K. S., Akkinepally R. R., Devarakonda R. K., Drug Development and Industrial Pharmacy, 2008, 34(8), 789CrossRefGoogle Scholar
  35. [35]
    Liang K., Such G. K., Johnston A. P., Zhu Z., Ejima H., Richardson J. J., Cui J., Caruso F., Advanced Materials, 2014, 26(12), 1901CrossRefGoogle Scholar
  36. [36]
    Qian C., Yu J., Chen Y., Hu Q., Xiao X., Sun W., Wang C., Feng P., Shen Q. D., Gu Z., Advanced Materials, 2016, 28(17), 3313CrossRefGoogle Scholar
  37. [37]
    Outomuro D., Grana D. R., Azzato F., Milei J., International Journal of Cardiology, 2007, 117(1), 6CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yunxia Li
    • 1
  • Wenjuan Du
    • 2
  • Zhiguang Fu
    • 1
  • Huanhuan Wang
    • 1
  • Jiexin Wang
    • 3
  • Yuan Le
    • 3
  • Jianjun Zhang
    • 3
  • Ning Wen
    • 1
  1. 1.Department of Stomatologythe General Hospital of Chinese PLABeijingP. R. China
  2. 2.Department of Oncologythe General Hospital of Chinese PLABeijingP. R. China
  3. 3.College of Chemical EngineeringBeijing University of Chemical TechnologyBeijingP. R. China

Personalised recommendations