Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 1051–1057 | Cite as

Grafting of MIPs from PVDF Membranes via Reversible Addition-fragmentation Chain Transfer Polymerization for Selective Removal of p-Hydroxybenzoic Acid

  • Yanying Dong
  • Ping YuEmail author
  • Qilong Sun
  • Yang Lu
  • Zhenjiang Tan
  • Xiaopeng Yu


Effective molecularly imprinted membranes(MIMs) were developed as an efficient adsorbent for the selective removal of p-hydroxybenzoic acid(p-HB) from acetylsalicylic acid(ASA, aspirin). The MIMs were grafted successfully from poly(vinylidene fluoride) microfiltration membranes via reversible addition-fragmentation chain transfer(RAFT) polymerization. The graft copolymerization of acrylic acid(AA) in the presence of template p-hydroxybenzoic acid led to molecularly imprinted polymer(MIP) film coated membranes. The obtained MIMs were characterized by scanning electron microscopy(SEM), Fourier transform infrared spectrophotometer(FTIR) and Raman spectra, and batch mode adsorption studies were carried out to investigate the specific adsorption equilibrium, kinetics and selective recognition properties of different MIMs. The kinetic properties of the MIMs could be well described by the pseudo-second-order rate equation. Selective permeation experiments were performed to evaluate the permeation selectivity of the p-HB imprinted membranes. The observed performances of the MIMs are applicable to the further purification of aspirin.


Acetylsalicylic acid Reversible addition-fragmentation chain transfer Molecularly imprinted membrane p-Hydroxybenzoic acid Selective adsorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Vleesschauwer D. D., Filipe O., Hoffman G., Seifi H. S., Haeck A., New Phytologist, 2018, 217, 305CrossRefGoogle Scholar
  2. [2]
    Leaberry B. A., J. Nurs. Care Qual., 2010, 25, 17CrossRefGoogle Scholar
  3. [3]
    Routledge E. J., Parker J., Odum J., Ashby J., Sumpter J. P., Toxicol Appl. Pharmacol., 1998, 153, 12CrossRefGoogle Scholar
  4. [4]
    Mazzott E., Picca R. A., Malitesta C., Biosens Bioelectron, 2008, 23, 1152CrossRefGoogle Scholar
  5. [5]
    Khan H., Khan T., Park J. K., Sep Purif. Technol., 2008, 62, 364CrossRefGoogle Scholar
  6. [6]
    Prasad B. B., Banerjee S., React. Funct: Polym., 2003, 55, 159CrossRefGoogle Scholar
  7. [7]
    Wulff G., Chem. Rev., 2002, 102, 1CrossRefGoogle Scholar
  8. [8]
    Lavignac N., Allender C. J., Brain K. R., Anal. Chim. Acta, 2004, 510, 139CrossRefGoogle Scholar
  9. [9]
    Rajkuma R. R., Katterle M., Warsinke A., Möhwald H., Scheller F. W., Biosens. Bioelectron., 2008, 23, 1195CrossRefGoogle Scholar
  10. [10]
    Kempe H., Kempe M., Anal. Chem., 2006, 78, 3659CrossRefGoogle Scholar
  11. [11]
    Vazquez M. S., Spivak D. A., J. Am. Chem. Soc., 2004, 126, 7827CrossRefGoogle Scholar
  12. [12]
    Schmidt R. H., Mosbach K., Haupt K., Adv. Mater., 2004, 16, 719CrossRefGoogle Scholar
  13. [13]
    Sreenivasan K., Anal. Chim. Acta, 2007, 583, 284CrossRefGoogle Scholar
  14. [14]
    Liu W. F., Zhao H. J., Yang Y. Z., Liu X. G., Xu B. S., Appl. Surf. Sci., 2013, 277, 146CrossRefGoogle Scholar
  15. [15]
    Lu Y., Yan C. L., Wang X. J., Wang G. K., Appl. Surf. Sci., 2009, 256, 1341CrossRefGoogle Scholar
  16. [16]
    Gao B. J., Wang J., An F. Q., Liu Q., Polymer, 2008, 49, 1230CrossRefGoogle Scholar
  17. [17]
    Berti F., Todros S., Lakshmi D., Whitcombe M. J., Biosens Bioelec-tron, 2010, 26, 497CrossRefGoogle Scholar
  18. [18]
    Lee E., Park D. W., Lee J. O., Kim D. S., Kim B. S., Colloid Surface A, 2008, 313, 202Google Scholar
  19. [19]
    Meng M. J., Feng Y. H., Zhang M., Ji Y. J., Yan Y. S., Chem. Eng. J., 2013, 231, 132CrossRefGoogle Scholar
  20. [20]
    Masakazu Y., Kalsang T., Ştefan O. D., Chem. Rev., 2018, 116, 11500Google Scholar
  21. [21]
    Zhang X., Yang S., Jiang R., Luo A. Q., Sensors Actuat. B: Chem., 2017, 34, 254Google Scholar
  22. [22]
    Wei M. H., Wang S., Jiang W. Y., Chen H. Y., Wang Y., Meng T., J. Inorg. Organomet. P, 2018, 28, 295CrossRefGoogle Scholar
  23. [23]
    Du W., Sun M., Guo P., Chang C., Fu Q., Food Chem., 2018, 26, 73CrossRefGoogle Scholar
  24. [24]
    Liu F., Hashim N. A., Liu Y., Abed M. R. M., Li K., J. Membrane Sci., 2011, 375, 1CrossRefGoogle Scholar
  25. [25]
    Edmondson S., Osborne V. L., Huck W., Chem. Soc. Rev., 2014, 33, 14CrossRefGoogle Scholar
  26. [26]
    Senaratne W., Andruzzi L., Ober C. K., Biomacromolecules, 2005, 6, 2427CrossRefGoogle Scholar
  27. [27]
    Li Y., Zhou W. H., Yang H. H., Wang X. R., Talanta, 2009, 79, 141CrossRefGoogle Scholar
  28. [28]
    Xu Z. H., Li L., Wu F. W., Tan S. J., Zhang Z. B., J. Membr. Sci., 2005, 255, 125CrossRefGoogle Scholar
  29. [29]
    Ying L., Yu W. H., Kang E. T., Neoh K. G., Langmuir, 2004, 20, 6032CrossRefGoogle Scholar
  30. [30]
    Ho Y. S., McKay G., Process Biochem., 1999, 34, 451CrossRefGoogle Scholar
  31. [31]
    Baydemir G., Andaç M., Bereli N., Say R., Denizli A., Ind. Eng. Chem. Res., 2007, 46, 2843CrossRefGoogle Scholar
  32. [32]
    Wu Y. L., Yan M., Cui J. Y., Yan Y. S., Li C. X., Adv. Funct. Mater., 2015, 25, 5823CrossRefGoogle Scholar
  33. [33]
    Wu Y. L., Liu X. L., Meng M. J., Lv P., Yan M., Wei X., Yan Y. S., Li C. X., J. Membr., 2015, 490, 169CrossRefGoogle Scholar
  34. [34]
    Ulbricht M., J. Chromatogr. B, 2004, 804, 113CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yanying Dong
    • 1
    • 2
  • Ping Yu
    • 1
    • 2
    Email author
  • Qilong Sun
    • 3
  • Yang Lu
    • 1
    • 2
  • Zhenjiang Tan
    • 1
    • 2
  • Xiaopeng Yu
    • 1
    • 2
  1. 1.School of Computer ScienceJilin Normal UniversitySipingP. R. China
  2. 2.Key Laboratory of Numerical Simulation of Jilin ProvinceJilin Normal UniversitySipingP. R. China
  3. 3.School of ManagementJilin Normal UniversitySipingP. R. China

Personalised recommendations