Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 965–970 | Cite as

Promoting Effects of Iron on CO Oxidation over Au/TiO2 Supported Au Nanoparticles

  • Siyuan Zhong
  • Qiuwan Han
  • Baolin Zhu
  • Weiping Huang
  • Shoumin ZhangEmail author
Article
  • 14 Downloads

Abstract

Fe-doped TiO2 supported gold nanoparticles as high-performance CO oxidation catalysts were prepared. XRD data revealed that TiO2 support was in an anatase phase. After calcination at 300 °C, the sample showed nanotube structure, and the size of gold nanoparticles was 3.1 nm. When calcined at 500 °C, most nanotubes broke, and gold nanoparticles grew up to 5.9 nm. XPS spectrum indicated the presence of Fe in the +3 oxidation state. Au/Fe-TiO2(Au: 1.44%, Fe: 1.35%) calcined at 300 °C possessed the best catalytic activity, and it could completely convert CO at 25 °C. The temperature of 100% CO conversion(T100%) of Fe-free catalyst was 40 °C. After the catalysts were stored at room temperature for 7 d, T100% of Au/Fe-TiO2 increased from 25 °C to 30 °C, while T100% of Fe-free catalyst increased from 40 °C to 80 °C. The catalytic activity and storage stability of Au/TiO2 could be improved by Fe-doping. The increase of specific surface area, generation of oxygen vacancies and new adsorption sites, depression of the growth of gold nanoparticles, and strong metal-support interaction were responsible for the promoting effect of iron on the catalytic performance of Au/TiO2 for CO oxidation.

Keywords

Titanium dioxide Nanotubes Gold Iron Carbon monoxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ma Z., Dai S., Nano Res., 2011, 4, 3CrossRefGoogle Scholar
  2. [2]
    Lakshmanan P., Park J. E., Park E. D., Catal. Surv. Asia, 2014, 18, 75CrossRefGoogle Scholar
  3. [3]
    Roy P., Berger S., Schmuki P., Angew. Chem. Int. Ed., 2011, 50, 2904CrossRefGoogle Scholar
  4. [4]
    Méndez-Cruz M., Ramírez-Solísa J., Zanella R., Catal. Today, 2011, 166, 172CrossRefGoogle Scholar
  5. [5]
    Zhao H., Zhang P., Wang Y. D., Huang W. P., Zhang S. M., J. Sol-Gel Sci. Technol., 2014, 71, 406CrossRefGoogle Scholar
  6. [6]
    Shou M., Takekawa H., Ju D., Hagiwara T., Lu D., Tanaka K., Catal. Lett., 2006, 108, 119CrossRefGoogle Scholar
  7. [7]
    Moreau F., Bond G. C., Catal. Today, 2006, 114, 362CrossRefGoogle Scholar
  8. [8]
    Yang Y. F., Sangeetha P., Chen Y. W., Ind. Eng. Chem. Res., 2009, 48, 10402CrossRefGoogle Scholar
  9. [9]
    Parida K. M., Sahua N., Mohapatra P., Scurrell M. S., J. Mol. Catal. A: Chem., 2010, 319, 92CrossRefGoogle Scholar
  10. [10]
    Yu S., Yun H. J., Lee D. M., Yi J., J. Mater. Chem., 2012, 22, 12629CrossRefGoogle Scholar
  11. [11]
    Mariana H. R., Roberto C. S., Rodolfo Z., Vicente R. G., Facundo R., Catal. Lett., 2018 148, 383Google Scholar
  12. [12]
    Zhang P., Guo J. L., Zhao P., Zhu B. L., Huang W. P., Zhang S. M., RSC Adv., 2015, 5, 11989CrossRefGoogle Scholar
  13. [13]
    Tong T. Z., Zhang J. L., Tian B. Z., Chen F., He D. N., J. Hazard Mater., 2008, 155, 572CrossRefGoogle Scholar
  14. [14]
    Wu Y. M., Zhang J. L., Xiao L., Chen F., Appl. Catal. B: Envir., 2009, 88, 525CrossRefGoogle Scholar
  15. [15]
    Xu Z. H., Yu J. G., Nanoscale, 2011, 3, 3138CrossRefGoogle Scholar
  16. [16]
    Deng L. X., Wang S. R., Liu D. Y., Zhu B. L., Huang W. P., Wu S. H., Zhang S. M., Catal. Lett., 2009, 129, 513CrossRefGoogle Scholar
  17. [17]
    Gao Y., Fan X. B., Zhang W. F., Zhao Q. S., Zhang G. L., Zhang F. B., Li Y., Mater. Lett., 2014, 130, 1CrossRefGoogle Scholar
  18. [18]
    Li X., Zheng J. M., Yang X. L., Dai W. L., Fan K. N., Chin. J. Catal., 2013, 34, 1013CrossRefGoogle Scholar
  19. [19]
    Zwijnenburg A, Goossens A., Sloof W. G., Crajé M. W. J., van der Kraan A. M., Jos de Jongh L., Makkee M., Moulijn J. A., J. Phys. Chem. B., 2002, 106, 9853CrossRefGoogle Scholar
  20. [20]
    Boccuzzi F., Chiorino A., Manzoli M., Lu P., Akita T., Ichikawa S., Haruta M., J. Catal., 2001, 202, 256CrossRefGoogle Scholar
  21. [21]
    Daté M., Ichihashi Y., Yamashita T., Chiorino A., Boccuzzi F., Haruta M., Catal. Today, 2002, 72, 89CrossRefGoogle Scholar
  22. [22]
    Zanella R., Louis C., Catal. Today, 2005, 107/108, 768Google Scholar
  23. [23]
    Hussain I., Graham S., Wang Z. X., Tan B., Sherrington D. C., Ran-nard S. P., Cooper A. I., Brust M., J. Am. Chem. Soc., 2005, 127, 16398CrossRefGoogle Scholar
  24. [24]
    Westcott S. L., Oldenburg S. J., Lee T. R., Halas N. J., Langmuir, 1998, 14, 5396CrossRefGoogle Scholar
  25. [25]
    Jain P. K., Huang X. H., El-Sayed I. H., El-Sayed M. A., Plasmonics, 2007, 2, 107CrossRefGoogle Scholar
  26. [26]
    Driskell J. D., Lipert R. J., Porter M. D., J. Phys. Chem. B, 2006, 110, 17444CrossRefGoogle Scholar
  27. [27]
    Carrot G., Valmalette J. C., Plummer C. J. G., Scholz S. M., Dutta J., Hofmann H., Hilborn J. G., Colloid Polym. Sci., 1998, 276, 853CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Siyuan Zhong
    • 1
  • Qiuwan Han
    • 1
  • Baolin Zhu
    • 1
  • Weiping Huang
    • 1
  • Shoumin Zhang
    • 1
    Email author
  1. 1.Key Laboratory of Advanced Energy Material Chemistry(MOE), Tianjin Key Lab of Metal and Molecule Based Material Chemistry, College of ChemistryNankai UniversityTianjinP. R. China

Personalised recommendations