Chemical Research in Chinese Universities

, Volume 34, Issue 5, pp 727–731 | Cite as

CuCl2/8-Hydroxyquinoline-catalyzed α-Arylation of Diethyl Malonate with Aryl Bromides

  • Jiuquan Yang
  • Guojie WuEmail author
  • Yupeng HeEmail author
  • Fushe Han


A general and efficient coupling of aryl bromides with diethyl malonate is presented. The reaction provided the α-arylated diethyl malonates in moderate to good yields with a low loading of CuCl2(5%, molar fraction) and 8-hydroxyquinoline(5%, molar fraction). This method has good compatibility for a wide range of aryl bromides.


Copper catalyst α-Arylation Malonate Ullmann reaction Hurtley reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_8137_MOESM1_ESM.pdf (1.7 mb)
CuCl2/8-Hydroxyquinoline-catalyzed α-Arylation of Diethyl Malonate with Aryl Bromides


  1. [1]
    Rieu J. P., Boucherle A., Cousse H., Mouzin G., Tetrahedron, 1986 42(15), 4095CrossRefGoogle Scholar
  2. [2]
    Kimura Y., Nishibe M., Nakajima H., Hamasaki T., Agric. Biol. Chem., 1991 55(4), 1137CrossRefGoogle Scholar
  3. [3]
    Giardiello F. M., Hamilton S. R., Krush A. J., Piantadosi S., Hylind L. M., Celano P., Booker S. V., Robinson C. R., Offerhaus G. J. A., N. Engl. J. Med., 1993 328(18), 1313CrossRefPubMedGoogle Scholar
  4. [4]
    Kong F. M., Andersen R. J., J. Org. Chem., 1993 58(24), 6924CrossRefGoogle Scholar
  5. [5]
    Takeda T., Gonda R., Hatano K., Chem. Pharm. Bull., 1997 45(4), 697CrossRefGoogle Scholar
  6. [6]
    Olmedo D., Sancho R., Bedoya L. M., López-Pérez J. L., Olmol E. D., Muñoz E., Alcamí J., Gupta M. P., Feliciano A. S., Molecules, 2012 17(8), 9245CrossRefPubMedGoogle Scholar
  7. [7]
    Harrington P. J., Lodewijk E., Org. Process Res. Dev., 1997 1(1), 72CrossRefGoogle Scholar
  8. [8]
    Hegde V. R., Dai P., Patel M., Gullo V. P., Tetrahedron Lett., 1998 39(32), 5683CrossRefGoogle Scholar
  9. [9]
    Kalgutkar A. S., Marnett A. B., Crews B. C., Remmel R. P., Marnett L. J., J. Med. Chem., 2000 43(15), 2860CrossRefPubMedGoogle Scholar
  10. [10]
    Dannhardt G., Kiefer W., Eur. J. Med. Chem., 2001 36(2), 109CrossRefPubMedGoogle Scholar
  11. [11]
    Jang J. H., Lee H., Sharma A., Lee S. M., Lee T. H., Kang C., Kim J. S., Chem. Commun., 2016 52(64), 9965CrossRefGoogle Scholar
  12. [12]
    Rocca J., Manin S., Hulin A., Aissat A., Verbecq-Morlot W., Prulière-Escabasse V., Wohlhuter-Haddad A., Epaud R., Fanen P., Tarze A., Brit. J. Pharmacol., 2016 173(11), 1728CrossRefGoogle Scholar
  13. [13]
    Hoekstra W. J., Patel H. S., Liang X., Blanc J. B., Heyer D. O., Willson T. M., Iannone M. A., Kadwell S. H., Miller L. A., Pearce K. H., Simmons C. A., Shearin J., J. Med. Chem., 2005 48(6), 2243CrossRefPubMedGoogle Scholar
  14. [14]
    Rivkin A., Adams B., Tetrahedron Lett., 2006 47(14), 2395CrossRefGoogle Scholar
  15. [15]
    Wang B., Lu B., Jiang Y. W., Zhang Y. H., Ma, D. W., Org. Lett., 2008 10(13), 2761CrossRefPubMedGoogle Scholar
  16. [16]
    Bolz I., Schaarschmidt D., Rüffer T., Lang H., Spange S., Angew. Chem. Int. Ed., 2009 48(40), 7440CrossRefGoogle Scholar
  17. [17]
    Albers A., Demeshko S., Dechert S., Bill E., Bothe E., Meyer F., Angew. Chem. Int. Ed., 2011 50(39), 9191CrossRefGoogle Scholar
  18. [18]
    Olmedo D., Sancho R., Bedoya L. M., López-Pérez J. L., Olmol E. D., Muñoz E., Alcamí J., Gupta M. P., Feliciano A. S., Molecules, 2012 17(8), 9245CrossRefPubMedGoogle Scholar
  19. [19]
    Enoua G. C., Uray G., Stadlbauer W., J. Heterocyclic Chem., 2012 49(6), 1415CrossRefGoogle Scholar
  20. [20]
    Culkin D. A., Hartwig J. F., Acc. Chem. Res., 2003 36(4), 234CrossRefPubMedGoogle Scholar
  21. [21]
    Johansson C. C. C., Colacot T. J., Angew Chem. Int. Ed., 2010 49(4), 676CrossRefGoogle Scholar
  22. [22]
    Bellina F., Rossi R., Chem. Rev., 2010 110(2), 1082CrossRefPubMedPubMedCentralGoogle Scholar
  23. [23]
    Sivanandan S. T., Shaji A., Ibnusaud I., Johansson Seechurn C. C. C., Colacot T. J., Eur. J. Org. Chem., 2015, 38Google Scholar
  24. [24]
    Evano G., Blanchard N., Toumi M., Chem. Rev., 2008 108(8), 3054CrossRefPubMedGoogle Scholar
  25. [25]
    Monnier F., Taillefer M., Angew Chem. Int. Ed., 2008 47(17), 3096CrossRefGoogle Scholar
  26. [26]
    Ma D. W., Cai X. A., Acc. Chem. Res., 2008 41(11), 1450CrossRefPubMedGoogle Scholar
  27. [27]
    Monnier F., Taillefer M., Angew Chem. Int. Ed., 2009 48(38), 6954CrossRefGoogle Scholar
  28. [28]
    Liu Y. Y., Wan J. P., Chem.-Asian J., 2012 7(7), 1488CrossRefPubMedGoogle Scholar
  29. [29]
    Bhunia S., Pawar G. G., Kumar S. V., Jiang Y., Ma D. W., Angew Chem. Int. Ed., 2017 56(51), 16136CrossRefGoogle Scholar
  30. [30]
    Hurtley W. R. H., J. Chem. Soc., 1929, 1870Google Scholar
  31. [31]
    Hennessy E. J., Buchwald S. L., Org. Lett., 2002 4(2), 269CrossRefPubMedGoogle Scholar
  32. [32]
    Xie X. A., Cai G. R., Ma D. W., Org. Lett., 2005 7(21), 4693CrossRefPubMedGoogle Scholar
  33. [33]
    Yip S. F., Cheung H. Y., Zhou Z. Y., Kwong F. Y., Org. Lett., 2007 9(17), 3469CrossRefPubMedGoogle Scholar
  34. [34]
    Zeng Y., Zhang H. L., Yang Z., Liu C. K., Fang Z., Guo K., Synlett., 2018 29(1), 79CrossRefGoogle Scholar
  35. [35]
    Mino T., Yagishita F., Shibuya M., Kajiwara K., Shindo H., Sakamo-to M., Fujita T., Synlett., 2009 15, 2457CrossRefGoogle Scholar
  36. [36]
    Li Z. Q., Fu L. B., Wei J. J., Ha C. Y., Pei D. Q., Cai Q., Ding K., Synthesis, 2010 19, 3289Google Scholar
  37. [37]
    Liu J. L., Zeng R. S., Zhou C. M., Zhou J. P., Chin. J. Chem., 2011 29(2), 309CrossRefGoogle Scholar
  38. [38]
    Rout L., Regati S., Zhao C. G., Adv. Synth. Catal., 2011 353(18), 3340CrossRefPubMedPubMedCentralGoogle Scholar
  39. [39]
    Malakar C. C., Schmidt D., Conrad J., Beifuss U., Org. Lett., 2011 13(8), 1972CrossRefPubMedGoogle Scholar
  40. [40]
    Zhao D., Jiang Y. W., Ma D. W., Tetrahedron, 2014 70(20), 3327CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry, Chemical Engineering and Environmental EngineeringLiaoning Shihua UniversityFushunP. R. China
  2. 2.Jilin Province Key Lab of Green Chemistry and Process, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China

Personalised recommendations