Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 971–977 | Cite as

Stripping Voltammetric Analysis of Mercury at Base-treated Graphene Oxide Electrodes

  • Yaru Qiu
  • Lini Dong
  • Dong Xiang
  • Li Li
  • Liande ZhuEmail author
Article

Abstract

According to the Rourke’s model, graphene oxide(GO) synthesized from the oxidation of graphite actually consisted of partly oxidized graphene sheets and highly oxidized debris(OD). The OD was strongly adhered to the surface of graphene sheets, while they could be facilely removed by a base-washing procedure. The existence and removal by base-washing of OD were characterized by means of thermogravimetric analysis(TGA), FTIR spectroscopy, X-ray photoelectron spectroscopy(XPS), transmission electron microscopy(TEM) and Raman spectroscopy. The adsorption of OD not only made a great difference to the physical and chemical properties of GO, but also affected its electrochemical behavior when it was employed as an electrode material. In this article, we demonstrated that the electrochemical deposition and the subsequent voltammetric stripping analysis of mercury were significantly influenced by the presence of OD. The consequence suggests that the presence of OD on the sheets of GO restricts the electrochemical deposition behavior of mercury and further lowers the sensitivity of the voltammetric stripping responses. The sensitivity was observed as 0.78 A L mol‒1 at base-washed(bw)-GO/GC(glassy carbon) better than that at as-prepared GO(a-GO)/GC for 0.28 A L mol‒1. The limit of detection was calculated as 2.95 and 0.83 μmol/L before and after removing the OD, respectively. The availability of both electrodes was evaluated by detecting Hg2+ in lake water specimens using standard samples recovery.

Keywords

Graphene oxide Oxide debris Stripping voltammetry Mercury 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bansod B. K., Kumar T., Thakur R., Rana S., Singh I., Biosensors and Bioelectronics, 2017, 94, 443Google Scholar
  2. [2]
    Hong M., Wang M., Wang J., Xu X., Lin Z., Biosensors and Bioelectronics, 2017, 94, 19Google Scholar
  3. [3]
    Davidson C. M., Thomas R. P., McVey S. E., Perala R., Littlejohn D., Ure A. M., Anal. Chim. Acta, 1994, 291(3), 277Google Scholar
  4. [4]
    Li X. D., Coles B. J., Ramsey M. H., Thornton I., Chem. Geology, 1995, 124(1/2), 109Google Scholar
  5. [5]
    Wang H., Wu Z. K., Chen B. B., He M., Hu B., Analyst, 2015, 140(16), 5619Google Scholar
  6. [6]
    Zhu L. D., Tian C. Y., Yang R. L., Zhai J. L., Electroanal., 2008, 20(5), 527Google Scholar
  7. [7]
    Jia L., Dong L. N., Zhu L. D., Appl. Mater. Today, 2017, 8, 26Google Scholar
  8. [8]
    Suherman A. L., Tanner E. E. L., Compton R. G., Trends in Analyti-cal Chemistry, 2017, 94, 161Google Scholar
  9. [9]
    Yang D. X., Zhu L. D., Jiang X. Y., J. Electroanal. Chem., 2010, 640(1), 17Google Scholar
  10. [10]
    Wu Y. H., Mao X. Y., Cui X. J., Zhu L. D., Sensours and Actuators B, 2010, 145(2), 749Google Scholar
  11. [11]
    Li X. M., Ma D. Y., Zhu L. D., Chemistry-A European J., 2015, 21(48), 17239Google Scholar
  12. [12]
    Yang D. X., Zhu L. D., Jiang X. Y., Guo L. P., Sensors and Actuators B: Chemical, 2009, 141(1), 124Google Scholar
  13. [13]
    Economou A., Fielden P. R., Analyst, 2003, 128(3), 205Google Scholar
  14. [14]
    Wang J., Lu J., Hocevar S. B., Electroanal., 2001, 13(1), 13Google Scholar
  15. [15]
    Nguyen H. L., Cao H. H., Nguyen D. T., Electroanal., 2017, 29(2), 595Google Scholar
  16. [16]
    Mahmoudian M. R., Basirun W. J., Alias Y., RSC Advances, 2016, 6(43), 36459Google Scholar
  17. [17]
    Sahoo S., Satpati A. K., Reddy A. V. R., RSC Advances, 2015, 5(33), 25794Google Scholar
  18. [18]
    Hassan R. Y. A., Kamel M. S., Hassan H. N. A., J. Electroanal. Chem., 2015, 759, 101Google Scholar
  19. [19]
    Dumitrescu I., Unwin P. R., Macpherson J. V., Chem. Commun., 2009, (45), 6886Google Scholar
  20. [20]
    Banks C. E., Davies T. J., Wildgoose G. G., Compton R. G., Chem. Commun., 2005, (7), 829Google Scholar
  21. [21]
    Shao Y. Y., Wang J., Wu H., Liu J., Aksay I. A., Lin Y., Electroanal., 2010, 22(10), 1027Google Scholar
  22. [22]
    Tan F., Cong L. C., Saucedo N. M., Gao J. S., Li X. N., Mulchandani A., J. Hazard. Mater., 2016, 320, 226Google Scholar
  23. [23]
    Li Y. M., Tang L. H., Li J. H., Electrochem. Commun., 2009, 11(4), 846Google Scholar
  24. [24]
    Wang L., Ambrosi A., Pumera M., Chemistry-An Asian J., 2013, 8(6), 1200Google Scholar
  25. [25]
    Li J., Guo S. J., Zhai Y. M., Wang E. K., Electrochem. Commun., 2009, 11(5), 1085Google Scholar
  26. [26]
    Wang Z. M., Liu E. J., Talanta, 2013, 103, 47Google Scholar
  27. [27]
    Gong J. M., Zhou T., Song D. D., Zhang L. Z., Sensors and Actuators B: Chemical, 2010, 150(2), 491Google Scholar
  28. [28]
    Rourke J. P., Pandey P. A., Moore J. J., Bates M., Kinloch I. A., Young R. J., Wilson N. R., Angew. Chem., 2011, 123(14), 3231Google Scholar
  29. [29]
    Bonanni A., Ambrosi A., Chua C. K., Pumera M., ACS Nano, 2014, 8(5), 4197Google Scholar
  30. [30]
    Li X. M., Yang X. Y., Jia L., Ma X., Zhu L. D., Electrochem. Com-mun., 2012, 23, 94Google Scholar
  31. [31]
    Ma X., Jia L., Zhang L., Zhu L. D., Chem. Eur. J., 2014, 20(14), 4072Google Scholar
  32. [32]
    Ma D. Y., Dong L. N., Zhou M., Zhu L. D., Analyst, 2016, 141(9), 2761Google Scholar
  33. [33]
    Faria A. F., Martinez D. S. T., Moraes A. C. M., Chem. Mater., 2012, 24(21), 4080Google Scholar
  34. [34]
    Brownson D. A. C., Banks C. E., Electrochem. Commun., 2011, 13(2), 111Google Scholar
  35. [35]
    Xu Y. X., Bai H., Lu G., Li C., Shi G. Q., J. Am. Chem. Soc., 2008, 130(18), 5856Google Scholar
  36. [36]
    Shen J. F., Hu Y. Z., Shi M., Lu X., Li C., Ye M. X., Chem. Mater., 2009, 21(15), 3514Google Scholar
  37. [37]
    Fogden S., Verdejo R., Cottam B., Shaffer M., Chem. Phys. Lett., 2008, 460(1–3), 162Google Scholar
  38. [38]
    Chua C. K., Ambrosi A., Pumera M., J. Mater. Chem., 2012, 22(22), 11054Google Scholar
  39. [39]
    Yang X. Y., Li X. M., Ma X., Zhu L. D., RSC Advances, 2013, 3, 6752Google Scholar
  40. [40]
    Akhavan O., ACS Nano, 2010, 4(7), 4174Google Scholar
  41. [41]
    Roushani M., Valipour A., Saedi Z., Sensors and Actuators B: Chemical, 2016, 233, 419Google Scholar
  42. [42]
    Yasri N. G., Sundramoorthy A. K., Chang W. J., Front. Mater., 2014, 1, 33Google Scholar
  43. [43]
    Cesarino I., Marino G., do Rosário Matos J., Talanta, 2008, 75(1), 15Google Scholar
  44. [44]
    Ratner N., Mandler D., Anal. Chem., 2015, 87(10), 5148Google Scholar
  45. [45]
    Rajawat D. S., Srivastava S., Satsangee S. P., Int. J. Electrochem. Sci., 2012, 7(11), 11456Google Scholar
  46. [46]
    Domínguez-Renedo O., Alonso-Lomillo M. A., Ferreira-Goncalves L., Talanta, 2009, 79(5), 1306Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yaru Qiu
    • 1
  • Lini Dong
    • 1
  • Dong Xiang
    • 1
  • Li Li
    • 1
  • Liande Zhu
    • 1
    Email author
  1. 1.Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, School of ChemistryNortheast Normal UniversityChangchunP. R. China

Personalised recommendations